
JOURNAL OF ENGINEERING DESIGN
2019, VOL. 30, NOS. 10–12, 477–522
https://doi.org/10.1080/09544828.2019.1642461

Integrating four-dimensional ontology and systems
requirements modelling

Conrad Bocka and Charles Galeyb
aU.S. National Institute of Standards and Technology, Gaithersburg, MD, USA; bU.S. National Aeronautics and
Space Administration, Jet Propulsion Laboratory, Pasadena, California, USA

ABSTRACT
Ontology has many applications to engineering but is not easily
taken up by engineers. For example, specifying products in space
and time together (four dimensions) enables more reliable mod-
elling and analysis, but this work is primarily ontological and not
accessible to most engineers. This paper summarises an existing
method for integrating ontology and engineering, then applies it to
four-dimensional requirements modelling, extending prior results.
Requirements in this paper are treated as desired effects of a sys-
temon its operating environment. These effects are often respecified
in multiple designs and tools, leading to redundancy and poten-
tial inconsistency. This can be addressed with centralised models
of operating environment developed in systems engineering lan-
guages. These languages can specify the structure of operating
environments formally enough to specify desired effects (except for
spatial aspects), but cannot do the same for desired behaviour of
those environments, because behaviours typically specify actions
taken by a system to achieve those effects. This paper proposes
new engineering-accessible extensions to logical system modelling
for specifying intended environmental effects, including spatial rela-
tionships, without committing to the actions taken to achieve them.
The proposed model supports centralised specifications of required
system effects on their operating environments, enabling efficient
integration with design.

ARTICLE HISTORY
Received 2 March 2018
Accepted 8 July 2019

KEYWORDS
Ontologies; systems
engineering;
four-dimensional;
requirements

1. Introduction

One of the hurdles to applying logical techniques in engineering is they are not usually
part of engineers’ training. For example, concepts fromdescription logic (Baader et al. 2010)
havemany applications to designing products and systems (Fortineau, Paviot, and Lamouri
2013; Fiorentini et al. 2010), but most engineers are not familiar with them. Additions to
engineering curricula could reduce these difficulties, but would still leave significant effort
applying logic to each engineering problem in each system design individually.

The problem can be addressed with separate but integrated layers for engineering and
logical languages (Bock et al. 2010; Bock andOdell 2011). Engineers use the layer devoted to
their discipline, while the logical layer is inferred without engineers being directly aware of

CONTACT Conrad Bock conrad.bock@nist.gov

© 2019 Informa UK Limited, trading as Taylor & Francis Group

http://www.tandfonline.com
https://tsapps.nist.gov/publication/get_pdf.cfm?pub_id=919164
mailto:conrad.bock@nist.gov

it (the integration itself is logical). For example, an engineering layermight provide away to
specify which product designs are intended to satisfy which requirements. Logically speak-
ing, requirements and designs are classifications of real, imagined, or simulated things
thatmeetparticularmembership conditions (specifications). Thedifference is requirements
place fewer conditions on things than designs do, which is the definition of logical sub-
sumption. For example, a product requirement for a lawnmowerwould be that it cut grass,
while a design satisfying this requirement might specify it is done with a rotating blade
and electricmotor. Engineers use the notion of requirement satisfaction in the engineering
layer,with subsumption automatically inferred from it in the logical layerwithout engineers
being aware of it. Reasoners can operate on the logical layer, with results translated back
to engineering. For example, if a reasoner finds requirement conditions do not actually
subsume design conditions as claimed, then this can be communicated to the engineer
in terms of requirement (dis)satisfaction, rather than subsumption.

This paper summarises prior work on the method above for integrating logical and
engineering-specific languages, then applies it to requirements specification, extending
earlier results. Requirements in this paper are taken to be specifications of structure and
desired behaviour of objects in the environment in which a system or product is operated
(Zave and Jackson 1997; Ingham et al. 2005; Bock et al. 2010). Designs are about the system
or product itself, specifying actions that cause required changes in environmental objects
or to make them behave in the required ways.1 Actions of the product are not specified in
requirements, enabling designs to use alternative actions that have the same effects on the
environment.

Designs typically have redundant and potentially inconsistent descriptions of their
operating environments, significantly reducing the efficiency of engineering processes,
such as exploring tradeoffs among multiple possible designs, or determining whether
requirements are feasible to meet (which usually have their own alternatives and varia-
tions). Reconstructing andmaintainingmultiple possible requirements inmultiple possible
designs is time-consuming and error-prone. The complexity and expense of managing
engineering processes is significantly higher when designs have their own specifications
of system operating environments.

The efficiencyproblems above canbe addressedby centralisedmodels of requiredoper-
ating environments, including their desired behaviour in the presence of a system, that are
accessible to engineers, and formal enough to support automated integration (query and
transformation) with other specifications. Automation is needed to support repeated syn-
chronisation of changes in specifications of system operating environments and designs
during potentially long engineering processes. Complicated or ambiguous specifications
lead to expensive and unreliable extraction and transformation of needed information,
making automated integration infeasible.

Structure of operating environments (structural requirements) can be specified in gen-
eral systems engineering languages, as in the SystemsModeling Language (SysML

R©
) (OMG

2017a; Friedenthal, Moore, and Steiner 2014; Friedenthal and Oster 2017), with enough
formality to support automated integration with other specifications (except for spatial
aspects). SysML extends the Unified Modeling Language (UML

R©
) (OMG 2015a), which

includes logical interpretations for foundational elements of structural modelling, such
as classification, attribution, and composition, drawn from description logic (Borgida and
Brachman2010; Berardi, Calvanese, andDeGiacomo2005;Guizzardi andHerre 2004). These

478 C. BOCK AND C. GALEY

interpretations of classification, attribution, and composition in SysML enable structural
aspects of systems to be used in a formal way for integration with other specifications.

Behaviour of operating environments (behavioural requirements) can also be speci-
fied in general systems engineering languages, such as SysML,2 but not with enough
formality to support automated integration with other specifications. Systems languages
are typically oriented around actions taken by systems, with intended effects attached
secondarily to actions, making them more suitable for specifying design behaviour than
required behaviour. In addition, systems languages have many ways of specifying action-
oriented behaviour that are not described precisely enough to reliably integrate them with
each other or other specifications. SysML alone has three kinds of diagrams for coordi-
nating actions that each have their own way of linking conditions and timing to systems
structure for effects modelling. Prior work on logical behaviour modelling is also action-
oriented (Gruninger and Menzel 2003; Bock and Odell 2011), complicating requirements
modelling as described above. Prior work applying ontology to requirements modelling is
also action-oriented, see Section 2.

Behaviour in this paper is taken to be changes in objects over time, and since objects
exist in space, this leads naturally to behaviour and object specifications in space and time
(four dimensions) (Partridge 2005;West 2011; Gruhier et al. 2016; Paul, Bradley, and Breunig
2015), rather than specifying objects only in space and behaviour only in time. One hurdle
to making this accessible to engineers is most formalisations of space and time are only of
abstractions such as spatial regions and time intervals (Randell, Cui, and Cohn 1992; Allen
1983), rather than products and systems existing in space and time. Ontologies of space
and time go a bit further by linking them to behaviours and objects (Borgo and Masolo
2010; Arp, Smith, and Spear 2015; Niles and Pease 2001), but the linkages themselves are
redundant, because behaviours and objects already exist in space and time, see Section 2.
This paper starts with classifications of real (or imagined, simulated) things that have the
characteristics of space and time directly, as in four-dimensional approaches, making
them more accessible and integratable with engineering applications.

This paper treats objects and behaviours as things occurring in both space and time,
using engineering and logical layers to make logical automation more accessible. It treats
requirements as specifications of desired effects on objects in the operating environment
of systems, rather than actions taken by systems designed to have these effects. The paper
generalises prior work on logical behaviour modelling, which only addressed time in action-
oriented models (Gruninger and Menzel 2003; Bock and Odell 2011). Effects on objects over
space and time are specified separately from actions having those effects, as needed for
requirements. Effects can be linked to actions during design via the same spatial and tem-
poral relations used during requirements development. This enables effects-based require-
ments to be used in alternative action-oriented designs more easily and consistently.

Section 2 reviews related work, showing it is not sufficient to model four-dimensional,
effects-based requirements in systems engineering languages. Section 3 summarises the
areas of logical and engineering-specific modelling, and an existing method for their inte-
gration. Sections 4 and 5 apply the method to requirements specification, extending prior
results. Section 4 updates and extends the logical models in Section 3 to support four-
dimensional modelling. Section 5 adds engineering concepts to the logical models of
Section 4 to facilitate effects-based requirement specification in space and time. Section 6
summarises the paper and outlines future work.

JOURNAL OF ENGINEERING DESIGN 479

2. Related work

Ontology is widely applied to engineering, but focuses on showing benefits of using it,
rather than how to make it accessible to engineers. Before 2010, ontology applications
to engineering were almost completely separate from the development of engineering-
friendly product modelling languages, unless they were only capturing terminology with-
out enabling automation (see reviews in Bock et al. [2010, 2009]). Work after that continued
this trend (Panetto, Dassisti, and Tursi 2012; van Ruijven 2015; Chen et al. 2016), with some
attention to integration with engineering workflow (Sanya and Shehab 2014; Zhang et al.
2012). Lack of work on ontology accessibility might be due to the need for combined
expertise in ontology, engineering, and language integration. The integration techniques
summarised in this paper are elaborations of model-driven architecture (Scott et al. 2004),
informed by formal language theory (see footnote 16 in Section 3.1), in the context of sys-
tems engineering and ontology research (Bock 2013, Bock and Gruninger 2005b; Bock et al.
2006).

Ontology is also widely applied to requirements engineering specifically (Castaneda
et al. 2010; Dermeval et al. 2016), with the areas most related to this paper being goal-
orientation, scenario/use-case approaches, and feature modelling:

• Goal orientation (Banach et al. 2014; van Lamsweerde 2009; Schmitz et al. 2008) and
its ontologies (Jureta, Mylopoulos, and Faulkner 2009; Negri et al. 2017) cover desired
effects of systems (requirements, see Section 1) by modelling beliefs and goals of sys-
tem stakeholders, as a basis for addressing conflicts and tradeoffs when developing
requirements. It also applies ontology to define taxonomies for various kinds of require-
ments. Goal-orientation mainly addresses requirements elicitation and management,
not integration with engineering-specific modelling, as in this paper.

• Scenario and use case approaches (Sutcliffe 2003; Glinz 2000; Jacobson et al. 2004) and
their ontologies (Sima and Brouseb 2014; Nguyen, Grundy, and Almorsy 2016) focus
on behaviour of objects that interact with a system. This work transitions between
desired effects in goal-orientation to system/operator actions that are of concern to
design. It does not separate effects and actions enough to enable multiple actions to
be alternatives for achieving the same effect (see below), as in this paper.

• Feature modelling originated to address software features across product lines (Kang
et al. 1990; Czarnecki and Eisenecker 2000; Lee, Kang, and Lee 2002), based on the broad
notion of software feature. It was formalised in various ways that include ontology to
reduce ambiguity (Schobbens et al. 2007; Benavides, Segura, and Ruiz-Corte 2010), and
was generalised to systems, but with some critiques by the requirements engineering
community (Buhne, Lauenroth, and Pohl 2004; Classen, Heymans, and Schobbens 2008).
Featuremodelling in its complete form is awayof tying environmental effects to systems
causing those effects, but often falls back into treating effects as actions of the system,
as scenarios and use cases do (see above).

The work above moves from system environment towards system, but does not sepa-
rate environmental effects (requirements in this paper) from systems causing those effects
(designs).

480 C. BOCK AND C. GALEY

Some other efforts in requirements engineering are directly concerned with modelling
system operational environments as part of requirements, but also focus on interactions of
systems and environment, rather than environmental effects separately from systems, and
do not use ontology in ways that can be integrated effectively with other ontology research
results. One of these formalises boundaries between systems and environments without
a set membership relation (Zeng 2015), putting it outside most ontology languages and
tools, which are set theoretic. Another uses state machines of environmental entities to
model system capabilities as behaviour traces of those entities in response to system inter-
action (Jin 2018), which is more detail than should be included in required effects. Ontology
is used to some extent in this work, but not for state machines of environmental entities.

One attempt to apply ontology purely to environmental effects only formalises abstract
syntax, without giving its relationship to things being modelled (semantics, see footnote
16 in Section 3.1) (Wagner et al. 2012). Some other ontology efforts treat requirements as
conditions on the system itself (designs), though the techniques could be used on some
aspects of its environment (Lin, Fox, and Bilgic 1996; Bernard 2012).3

Requirements in systems engineering languages, such as SysML, also do not com-
pletely separate actions from effects. For example, specifications of cruise controller
behaviours would include actions taken by controllers on the rest of their cars, such as
increasing gas intake by the engine, or pressure on disks by the brakes. This is too specific
for requirements as defined in Section 1, which should only describe effects on operating
environments (such as the speed of the car in this example), and leave actions achieving
them to system design. Requirements might attempt to specify as little as possible about
actions, but would still be specifying which components take which actions, unnecessarily
restricting design and complicating requirements.

In addition, systems engineering languages do not specify space and time formally
enough for automated reasoning and other analysis. They do not usually address space,
and extensions to them typically link spatial information to system elements without any
other integration (Singh et al. 2017; Barbedienne et al. 2014; Chen et al. 2018), rather than
treating spatial extent as an inherent characteristic of system elements enabling them to
have spatial relationships, as in this paper. Systems engineering languages represent time,
but have multiple ways of expressing the same temporal concepts, making automated
integration with control designs infeasible. For example, temporal order of actions might
be specified by transitions between states containing them in state machine formalisms
(Harel 1987; OMG 2015a), while the temporal order in which communication actions occur
between state machines might use message trace semantics (ITU 2011;OMG 2015a). Auto-
mated integrations using these behavioural models would need to recognise the same
temporal concepts expressed in a variety of ways. Some prior work addresses this prob-
lem with a single temporal model for system behaviours (Gruninger and Menzel 2003;
Bock and Odell 2011), but these are action-oriented, complicating requirements modelling
as described previously. These efforts formalise actions by giving conditions on them as
they occur, temporal conditions in particular. This facilitates integration by focusing on
the acts being modelled, without variations in how time is specified, as described above.
However, the effects of actions are either omitted (Bock and Odell 2011), or added sec-
ondarily (Gruninger and Menzel 2003), rather than being a central concept, as needed for
requirements.

JOURNAL OF ENGINEERING DESIGN 481

482 C. BOCK AND C. GALEY

System engineering could benefit from ontologies of space and time, but these usually
treat objects as existing in space and behaviours as existing in time, linking them together
to provide time to objects and space to behaviours (Borgo and Masolo 2010; Arp, Smith,
and Spear 2015) or modelling time and space separately and linking them to objects and
behaviours (Niles and Pease 2001). This complicates modelling and analysis with unneces-
sary linkages, such as one-to-one relations between objects and their histories, or between
object/behaviours and their times and locations, even though these things already exist
in space and time. Other formalisations of space and time do not consider objects and
behaviours at all (Randell, Cui, and Cohn 1992; Allen 1983). This paper treats objects and
behaviours as space–time entities (Partridge 2005; West 2011; Gruhier et al. 2016; Paul,
Bradley, and Breunig 2015), with objects participating in behaviours. It takes spatial and
temporal extent as inherent characteristics of system elements, enabling these elements
to be treated abstractly as spatiotemporal entities or concretely as engineered entities,
or both.

The modelling techniques in this paper can be applied in existing requirements engi-
neering methods. For example, they can be used during the Stakeholder Requirements
Definition Process of International Organization for Standardization 29148, a standard that
unifies and harmonises earlier requirements engineering standards (ISO 2018; Schneidera
and Berenbach 2013). This process defines requirements as derived from the expected
operational environment of the system, including environmental conditions, operational
scenarios, and timing of interactions between the system and environment. The modelling
approach in this paper formalises environmental effects of the system, which can be refined
into constraints on the system being designed (see requirements and designs in Sections
3.2 and 5.2).

3. Integrating ontology and engineering languages

Logical and engineering languages have complementary strengths and weaknesses. Engi-
neering languages are more useful in particular applications, while logical ones are more
useful for integration across disciplines. Engineering languages use logical concepts, but
with application-specific names, impeding integration across disciplines, while logical lan-
guages have no application concepts, making them too cumbersome for practical usage.
For example, all engineering disciplines categorise engineered objects (classification), spec-
ify characteristics of these objects and relationships between them (attribution), as well
as how they are built up from each other (composition). Each discipline uses application-
specific terms for classification, attribution, and composition, and do not see them as
applying to other areas. Logical modelling identifies these concepts separately from appli-
cations, reducing redundancy and improving consistency between disciplines, but des-
cribes the concepts in an abstract way that impedes use in any particular discipline.

This section summarises logical modelling in Section 3.1 and outlines an existing method
for its integration with engineering-specific modelling in Section 3.2. Combining logical
and engineering-specific modelling provides the benefits of both, enabling integration of
engineering models based on abstract concepts, while retaining engineering-friendly con-
cepts in each discipline. More information about logical modelling and its integration with
engineering is available in the references (Bock et al. 2010; Bock and Odell 2011, Bock 2013).

JOURNAL OF ENGINEERING DESIGN 483

Figure 1. Classification.

3.1. Logical modelling

Logical modelling concepts in this paper are drawn from description logic (Borgida and
Brachman 2010; Baader et al. 2010), specifically themost expressive kind (SROIQ) (Horrocks,
Kutz, and Sattler 2006), including:

• Classification of objects and behaviours being modelled
• Attribution to specify their characteristics and relationships
• Composition for aggregating objects and behaviours into larger ones

A graphical notation for these concepts is provided by UML (Berardi, Calvanese, and De
Giacomo 2005; Guizzardi and Herre 2004) and included in SysML (OMG 2017a, 2015a).4 It is
used in this paper with some extensions to show example objects related to their models.

Classification gathers things being modelled according to commonalities between those
things (classes). For example, some objects might be gathered under a class for cars if they
have wheels, transport less than six people at time, and have engines generating less than
500 kW of power. Classes form taxonomies according to degree of commonality among the
things grouped under each class. For example, cars, buses, and trains all have wheels, but
differ in the number of people they can transport and amount of power their engines can
generate. A class for things that have wheels and transport people categorises all the things
that cars, buses, and trains do (generalises the classes for cars, buses, and trains, which are
specialised from the broader class).5

Figure 1 shows UML classes (‘blocks’ in SysML) for cars and four-wheel drive vehicles
above the horizontal line, with dashed arrows linking from objects below the line being
classified (instances).6 The dashed arrows indicate the instance called ‘Mary’s Vehicle’ is a car
and a four-wheel drive vehicle, while the one called ‘John’s Vehicle’ is a car. Figure 2 shows
the closed-head arrow notation for generalisation. It introduces a class for four-wheel
drive cars and generalises it by the classes from Figure 1. This indicates that all instances
classified as four-wheel drive cars are also classified as cars and as four-wheel drive vehicles.
The classification arrows in Figures 1 and 2 both express that Mary’s vehicle is a car and a four-
wheel-drive vehicle, while John’s is a car.7 Figure 2 could include the same classification
arrows from Mary’s vehicle as in Figure 1, but Figure 2’s classification of Mary’s vehicle as a
four-wheel-drive vehicle, and its generalisation of four-wheel-drive vehicles, already imply
the classifications in Figure 1.

484 C. BOCK AND C. GALEY

Figure 2. Generalisation.

Attribution covers potential characteristics of things being modelled as well as relation-
ships between those things (properties or ‘roles’).8 For example, objects classified as cars
might have a property for their weight, which would be required to give a single number
(property value) for each object, based on a particular unit of measurement. These objects
might also have properties identifying other objects they contain (with special values for
that purpose), according to the role those things play in them. For example, objects clas-
sified as cars might have properties identifying their wheels, with one property identifying
the ones in the front of the car, and another identifying those in back. These properties
would be required to identify objects for each individual car that play the corresponding
roles (front and back) and are classified properly (under a class for wheels).

Figure 3 shows SysML properties, appearing in classes below their names, sectioned off
by horizontal lines (compartments). Property names are shown before the colon and the
kind of thing they identify appears after (property type). For example, the class for cars has
a property named ‘lfw’ identifying objects classified as wheels, and playing the role of the
left front wheel. Instances of (classified by) cars use property names followed equal signs
to show values of properties for each particular instance. For example, the value of lfw for
John’s car is an instance called ‘JLFW’, which plays the role of left front wheel in John’s car,
and is classified as a wheel on the right of the figure. As a wheel, JLFW has a size property
with the value ‘499mm’, which conforms to the property type in Wheel (the type name
includes a numeric range and unit for brevity). Properties of a class of things also apply to
specialised classes of those things, as illustrated on the left in Figure 5. All cars have weight,

Figure 3. Attribution.

JOURNAL OF ENGINEERING DESIGN 485

Figure 4. Association.

including four-wheel drive cars. Carets before property names indicate they are defined on
(‘inherited’ from) a more general class.

A more graphical notation for properties uses lines drawn from classes that have proper-
ties to other classes that type those properties (associations), as shown in Figure 4. The lfw
property on cars in Figure 3 is shown near a line between classes for cars and wheels, on the
end closer to the wheels. Another property can be shown on the other end, in this case a
property of wheels identifying the car they are in.9 A similar notation can be used between
instances showing links between instances that are classified by associations. In Figure 4
these link John and Mary’s cars to their left front wheels. Properties on each end of an asso-
ciation must have consistent values in instances of the associated classes. For example, the
value of lfw on John’s car is JLFW, so the value of inCar on JLFW must be John’s car, as shown
at the bottom of Figure 4. Black diamonds on one end of associations indicate instances at
the other end are dependent for their existence on the instance at the diamond end. For
example, the black diamond on the car end in Figure 4 indicates that destroying John’s or
Mary’s car will destroy their left front wheels.

Properties can be restricted by constructs similar to generalisation:

• One property might have values that are always values of another (subsetting), such as
people’s sisters always being their siblings.10 Figure 5 shows a property iw for impeller
wheels of cars (the ones being driven by the engine) subsetting another property w for
all wheels. This means values of iw are always included among the values of w (impeller
wheels are always wheels of the car). Numbers in square brackets after property names
indicate howmany values a propertymight haveon each thing in its class (multiplicity).11

The properties of car wheels in Figure 5 indicate cars might have 2, 3, or 4 wheels, some
or all ofwhichmight be impellers (this is restricted in four-wheel drive cars, see next). The
multiplicity symbol * indicates a property might have any number of values, including
none. Multiplicities are only shown in this paper when needed for clarity.

• An inherited property might have its values restricted to narrower classes and numbers
of things (redefining).12 Figure 5 shows the property iw inherited to four-wheel drive cars
and restricted to have exactly four values that are large wheels. Redefining properties
can also change their names, see the properties of sequence connectors in Figure 15,
Section 3.2. Subsetting properties can also restrict their type and multiplicity, see the
property of process plans in the same figure.

Generalisation arrows from subsetting and redefining properties are used in this paper
for illustration, but are not SysML notation (a small ‘r’ annotation indicates redefinition).

486 C. BOCK AND C. GALEY

Figure 5. Generalised properties and associations.

Figure 5 also shows the caret notation for the inherited weight property, see the discus-
sion of Figure 3. These properties are not restricted in any way and are often omitted from
diagrams.

Composite structure specifies how things are linked together into larger wholes based
on whole-part properties identifying the objects being composed, and part-part relation-
ships specifying links between the identified objects.13 For example, objects classified as
cars might have a whole-part property for their engines, and another for wheels driven by
the engine. These two properties can be linked by a part-part relationship that uses an
asso-ciation between engines and wheels they drive. The part-part relationship ensures
that the object playing the role of engine in each individual car is linked (using its
association) to the objects playing the role of driven wheels in the same car as the engine
(not wheels in other cars).

Figure 6 shows SysML notation for composition, as a structure compartment in classes. It
uses the same graphical notation as classes and associations, but with different meanings.
Rectangles show whole-part properties, while lines show part-part relationships (connec-
tors in SysML). Connectors are typed by associations (analogous to typing properties), and show
property names from those associations. Values of whole-part properties use proper-
ties of connecting associations to identify (link to) each other. For example, Figure 6 shows
whole-part properties of cars as rectangles in a structure compartment. These properties
identify objects that power and impel cars, which must be engines and wheels, respectively.
Text inside property rectangles is the same as appears in property compartments. The con-
nector between whole-part properties is typed by the association between engines and
wheels on the right of the figure. This association provides properties for linking values of
the whole-part properties (identifying power sources and impellers) to each other in each
individual car. Examples are shown by the instances at the bottom of the figure (classifica-
tion is sometimes notated in instance labels to the right of a colon after instance names, for
brevity). Connectors ensure the association between engines and wheels is used within
each car individually, rather than between engines and wheels in multiple cars.14 More
explanation of composition in SysML is available in Bock (2004, 2013).

Logical modelling can be used to formalise commonly needed real world concepts,
sometimes called ‘upper ontologies.’ These define:

(1) Broad classes of engineered things that can be specialised in applications (Catterson,
Davidson, and McArthur 2005; Marquardt et al. 2010; Ameri and Debasish 2006).

(2) Abstract concepts, such as space and time (Grenon and Smith 2004; Terziyan and
Kaikova 2016).

JOURNAL OF ENGINEERING DESIGN 487

Figure 6. Composition.

This paper applies the first upper ontology approach above to the second by modelling
abstract concepts as classifications of real (or imagined, simulated) things according to their
abstract characteristics, in particular, for space and time as in Figures 7 and 8 (Partridge
2005; West 2011; Gruhier et al. 2016; Paul, Bradley, and Breunig 2015). These apply some
spatial and temporal relations from Randell, Cui, and Cohn (1992) and Allen (1983),
respectively, to things that exist in space and happen in time (the rest can be added as
needed, see example in Section 5.3). For example, instead of modelling space as
regions and spatial relations on these, a class is introduced for things that exist in space,
with relations on them (similarly for time intervals and their relations). Figure 7 shows the
class ExistsInSpace for things that take space (analogous to space regions), with
properties/associations out-sideOf and insideOf to specify which of them are outside or
inside another, respectively (analogous to DC/EC and TPP/NTPP relations in Randell et al.
[1992]). Figure 8 shows the class HappensInTime for things that take time (analogous to
time intervals), with properties/associations happensBefore and happensDuring to
specify which of them happen before another, and which occur during another,
respectively (analogous to the union of before and meets, and union of dur and equal
relations in Allen [1983], respectively).

488 C. BOCK AND C. GALEY

Figure 7. Space model.

Figure 8. Time model.

Logical approaches can be applied to models, classifying model elements as if they
were real things (metamodeling). Figure 9 shows some model elements from previous fig-
ures classified by metaclasses and metaassociations from UML’s metamodel (SysML extends
this).15 Classes at the model level in Figure 2, such as Car and 4WDCar are also instances
(of Class) in Figure 9.16 To avoid confusion, this paper uses SysML notation at the model
level rather than instance notation, and reserves the term ‘instance’ for things classified by
the model rather by the metamodel. The abbreviations M0, M1, and M2 refer to the lev-
els of instances, models, and metamodels, respectively (Flatscher 2002; OMG 2010; Scott
et al. 2004). Section 3.2 uses class and property generalisation in models and metamodels
to combine logical and engineering languages.

Figure 9. Metamodelling.

JOURNAL OF ENGINEERING DESIGN 489

3.2. Engineering-specific modelling

In contrast to logical approaches, engineering-specific modelling supports particular engi-
neering disciplines, using concepts, terms, and views prevalent in those communities
(Fowler 2010). For example, systems engineers are concerned with gathering requirements
from stakeholders, developing high-level designs for coordinating other engineers, and
specifying tests to determine if designs satisfy requirements. SysML supports this com-
munity with concepts, terms, and views for requirements, designs, and tests (OMG 2017a;
Friedenthal et al. 2014). Figure 10 is example SysML diagram showing transportation safety
requirements on the left, satisfied by designs on the right (Bock 2005a). Guillemots («»)
in SysML indicates the kind of engineering language element represented by a particu-
lar shape or line. SysML adds requirements to UML, along with specialised dependencies
(shown as dashed arrows). SysML blocks (a kind of UML class) are used for designs, with sat-
isfaction dependencies to requirements. Requirements are derived on the left as designs are
refined (by specialisation) on the right. For example, when refining the design from small
vehicles to dry land vehicles, the safety requirement is derived to include stopping distance.
SysML provides a language that system engineers can readily use by extending UML with
concepts and terms from that community.

Figure 10 is useful for systems engineers, but not as much as it could be if it had logical
capabilities. For example, the lower left requirement only applies to vehicles with wheels,
but this cannot be modelled on the requirement and inherited to cars because requirement
satisfaction in SysML is not generalisation (see Section 3.1 about generalisation). The same is
true for other constraints that requirements might have for designs or derived require-
ments.17 Figure 11 translates Figure 10 into logical terms to address this (Bock et al. 2010).
Generalisation ensures that requirements apply to others derived from them and to designs
intended to satisfy them. However, the diagram no longer uses terms specific to systems
engineering, making it unsuitable in practice.

Logical and engineering-specific modelling can be combined by treating some model
elements as engineering-specific and logical at the same time (Bock et al. 2010; Bock and
Odell 2011), with each aspect available to its respective community. Since this affects model
elements rather than real things, it is done by combining metamodels, see Figure 12. The
logical concepts at the top (taken from Figure 9 in Section 3.1) generalise engineering-
specific ones, because logic applies to (is more general than) many disciplines.
SysML’s requirement and block concepts are represented as metaclasses generalised by UML
Class, indicating that requirements and blocks at the model level are classes as well as
engineering-specific elements (instance arrows from the lower elements in Figure 12 are
omitted, for simplicity).18 SysML Satisfy and DeriveRqt (requirement satisfaction and deriva-
tion) are generalised by UML Generalisation, enabling requirements and blocks (at M1)
to generalise each other, providing inheritance from requirements to other requirements
and blocks.19 Engineers would only see the requirements diagram, without generalisation
links, while logical reasoners can operate using the generalisations. This fills the logical
gaps in Figure 10 without removing engineering-specific concepts as in Figure 11, enabling
engineers to use familiar terms and still have the benefits of logical abstractions inferred logical
automatically.

490 C. BOCK AND C. GALEY

Figure 10. SysML requirements modelling.

Figure 11. Logical requirements modelling.

JOURNAL OF ENGINEERING DESIGN 491

Figure 12. Combining SysML and logical requirements modelling.

Engineering models also include behaviours. For example, production systems are typ-
ically specified as a series of operations on items flowing through the system (steps of a
process plan, in industrial engineering terms). These include ‘make’ operations that change
items, such as drilling parts, and others that do not, such as moving and storing parts
between make operations (material handling). Typically, mechanical engineers specify
make operations, while manufacturing engineers determine the others at factories pro-
ducing the items. For example, some factories might have machines that perform multiple
kinds of make operations, reducing moves between machines, while others might not.
Figure 13 shows two SysML activity diagrams for process plans, the upper with three make
steps and the lower with non-make steps added. The top diagram is not modified, enabling
it to be used for other factories.

The lower diagram in Figure 13 is typically made by copying the top diagram at each fac-
tory and adding steps, which is less reliable than using generalisation in logical models. For
example, the lower diagram could be modified to remove make steps or change their order-
ing, because copying breaks the link to the original diagram. This might be addressed by
specialising the lower activity in Figure 13 from the upper one, but the constructs for doing
this are not well specified for SysML behaviours.20 Figure 14 translates Figure 13 into logi-
cal terms to reduce ambiguity. Specialising process plans from HappensInTime in Figure 8,

492 C. BOCK AND C. GALEY

Figure 13. SysML behaviour modelling.

Section 3.1 (as a reusable library) ensures the plans classify things that occur in time, and
have temporal relations available to them:

• Steps are represented as properties, typed by specialised HappensInTime classes for
the operations (generalisations from operations are omitted for simplicity), and
subsetting the inverse property for temporal subintervals (happensDuring−1).21 Each
time the plans are carried out (represented as M0 instances, not shown), these
properties have values identifying operations as they are carried out.

• Time order of steps is represented as connectors typed by the relation for temporal
precedence (happensBefore). Each time the plans are carried out, operation happenings
identified by step properties are linked to the operation occurring after them.

Steps inherit to specialised plans like all properties, as do temporal relations, because
they apply to happenings of specialised plans also (see Section 3.1 about generalisation).
For example, the first make operation in the lower diagram happens during production
at the factory, and happens before the second make operation, as specified by the upper
diagram, but not necessarily immediately before. The lower diagram introduces steps for
moving and storing items, as well as their time order with respect to inherited move
steps. Logical behaviour modelling precisely specifies temporal relations between things
that occur in time, but the diagrams no longer use terms specific to behaviour modelling,
making them less suitable in practice.

As with requirement satisfaction and derivation, engineering-specific and logical
behaviour modelling can be combined, this time reusing libraries, as shown in Figure 15.
The logical language portion at the top adds a metaclass for SysML connectors (see
Section 3.1 about connectors, and Figure 9 for the other logical metaclasses). As in Figure 12,
logical metaclasses generalise engineering-specific ones, this time for process plans, steps,
and sequencing, generalised by Class, Property, and Connector, respectively (operations
are another engineering-specific class for typing steps, omitted for simplicity).22 Process
plans being classes enables them to generalise each other (at M1), as in Figure 14, but addi-
tional constraints are needed for plans and steps to happen in time by relating them to the
time model (Figure 8 in Section 3.1):

JOURNAL OF ENGINEERING DESIGN 493

Figure 14. Logical behaviour modelling.

• Process plans at themodel levelmust specialiseHappensInTime (or other process plans).
• Steps at themodel levelmust subset happensDuring−1 (or steps inmoregeneral process

plans).
• Sequences at the model level must be typed by happensBefore.

The above define a pattern of using the time model that tools can apply automatically
to system models. Figure 15 applies it by specialising the Produce Item plan from HappensIn-
Time, subsetting the Finish step from happensDuring−1 (other step subsetting omitted for
simplicity), and typing sequence connectors by happensBefore (omitted from the nota-
tion for simplicity). Tools can apply the pattern incrementally as engineers create process
plans, add steps, and sequence them through graphical interfaces, or it can be applied when
models are complete enough for analysis.23 Engineers would only see the activity diagram,
without specialisation and classification links to the library and metamodel, while logical
and temporal reasoners could operate at the logical layer of the library. Engineers would use
familiar terms and still have the benefits of temporal abstractions inferred automatically.

4. Logical modelling in space–time

This section updates the space and time models of Section 3.1 to support four-
dimensional modelling (see Section 1). Section 4.1 identifies commonalities in the space
and time models of Section 3.1, then unifies them by generalisation. Section 4.2 adds
another kind of composition (see Section 3.1) appropriate for continuous portions of
space and time, as needed for system requirements (see Section 5).

494 C. BOCK AND C. GALEY

Figure 15. Combining SysML and logical behaviour modelling.

4.1. Space, time, and space–time

The models in Figures 7 and 8 in Section 3.1 have classes for things viewed in space and
time separately, each with relationships for complete overlap (insideOf and happensDur-
ing) and no overlap (outsideOf and happensBefore) between these things.24 The logical
library in Figure 16 merges these classes into one for things that take (occur in) space as
well as time. It adds analogous relationships for (1) things occurring within others in both
space and time (complete overlap) (2) things occurring without others in either space, time,
or both (no overlap). The new relationships are linked by property subsetting to the rela-
tions of Figures 7 and 8 in opposite directions, reflecting the conjunction of space and time
needed for occurrences within others, and the disjunction allowed between space and time
for occurrences without (not overlapping) others. Occurrences within others must happen
during and inside of those others, while occurrences without others can either happen at
different times or be outside of the others, or both. Occurrences within others include all
occurrences that happen during and inside of others, indicated by the intersection symbol
between subsettings from the within property (multiple subsettings by themselves do not
necessarily identify all values in common between the supersets). These relationships can
be applied independently in space and time. For example, manufacturing cars might occur
in different places in the world, but happen at the same time, and assembly behaviours
might happen in the same manufacturing facility, but separated in time.

4.2. Composition in space–time

The space–time model in Figure 16 does not address the common case of objects that
are inside others for only some of their lifetimes (objects occur in time, see Section 5.1).

JOURNAL OF ENGINEERING DESIGN 495

Figure 16. Space, time, and space–time relationships.

For example, engines are built outside of cars, then installed in those cars, then perhaps
removed temporarily for repair, or replaced completely. In four-dimensional terms, the
space–time region of a car includes some of the region of the engine, but not all of it, and
vice versa. The models in Figure 16 could be updated to include partial overlap of occur-
rences, but this would not express when and where the overlap is. Models should be able
to specify, for example, that the space–time region of an engine is included in the region
of its car for as long as the engine can power the car. In terms of Figure 6 in Section 3.1, the
poweredBy property should identify the portions of space–time in which the engine can
power the car, which must be within the car and engine regions.

An answer to this problem is composition of things that are

• the same kind as the whole and
• cannot be separated from whole without destroying it

such as parts of sheet metal, or the same object existing at multiple places and times
(Winston, Chaffin, and Herrmann 1987; Odell 1994). These cannot be modelled with the
composition in Figure 6, where parts are different things than the whole and removable
from it, such as engines and wheels being different things than cars and removable from
them. Composition of space–time regions is between an (object or behaviour) occurrence
and ‘portions’ of it at various times or places (whole-portion relationships). For example,
cars exist for long periods, but for shorter periods within those they might be operating,
parked, or being repaired. The periods when a car is operating, parked, or repaired are
drawn from its whole existence in space and time, and are the same individual thing.
They cannot be removed from the car, as the engine or wheels can. They are portions of
the same car in space and time, and can be classified as cars (see model below), unlike
engines and wheels.

Figure 17 illustrates this with a space–time diagram of a car (adapted from West [2011]),
which collapses space into a single axis vertically, and lays time out horizontally. The
shaded/black areas indicate the spatial position of a single car over time, a four-dimensional
‘tube’ representing the same car over space and time, illustrated in two dimensions. When
the car is stationary, the corresponding shaded/black areas are rectangular. When it moves,
the areas are parallelograms occupying multiple vertical (spatial) positions along the hor-
izontal (time) axis. The figure identifies the car’s parked, operating, and repair periods by
‘slicing’ out portions of the tube in time, where all of the car’s spatial location is in each slice

496 C. BOCK AND C. GALEY

Figure 17. Object in four dimensions, time slices.

for the time interval indicated (Welty and Fikes 2006; Harbelot, Arenas, and Cruz 2013). The
car in this figure is operated and moved once, then starts to be operating and moved again,
but breaks down and is towed for repair after that.

Portions can be defined in space also, as illustrated in Figure 18 (adapted from West
[2011]). The spaces in cars for engines and wheels are identified by slicing out portions in
space. The figure shades these spaces with light dots when they are empty, and with
solids when something occupies them. The spaces extend over time for the life of the
car, moving in space as the car moves. The upper space is for an engine, the lower one for
wheels. Engines and wheels are put in these spaces when cars are built at the begin-
ning, shown by darker areas moving into the spaces from outside the car, and the engine
is later removed for repair, shown by a darker area moving out of the car at the end. Like all
portions, these spaces cannot be removed from their cars, even if nothing occupies them.
Part-part relationships, as in Figure 6 in Section 3.1, apply when the connected parts are
in the same whole at the same time. For example, in Figure18, the engine and wheels in
John’s car are linked when both occupy their designated spaces. They begin being linked
when the wheels are first installed (after the engine in this example), then they are unlinked
and relinked when the wheels are removed for maintenance and reinstalled, then unlinked
again when the engine is removed for repair.

Portions apply similarly to behaviours in space. For example, assembly behaviours
might occur in large factories, but some places inside the factories might be used only for
one step in the process, such as welding a car frame, or attaching an engine to it. These
smaller spatial regions in which particular assembly steps occur cannot be removed from
the existence of the assembly processes as a whole. The behaviours that occur in these
regions are assembly, just not as complete as the whole process.

Figure 19 shows a model for whole-portion relationships in space and time. The portion
property subsets the inverse relationship for occurrences that are within others (in both
space and time) in Figure 16 in Section 4.1, adding portion semantics as described above.
In particular, this relationship can only link an occurrence class to itself or one of its speciali-
sations as a portion, because a portion is the same kind of thing as its whole. A new notation
(double black diamond) is introduced to indicate that the composition is portional, rather
than of multiple objects, as in Section 3.1. The portion property generalises portions that

JOURNAL OF ENGINEERING DESIGN 497

Figure 18. Objects in four dimensions, space slices.

Figure 19. Portions in space and time.

are only limited in time, as in Figure 17, and portions that are only limited in space, as in
Figure 18 (time and space slices, respectively).

Figure 20 shows a model covering some of the example in Figure 17. Operating and
parking periods for cars are time slices of cars, which are also cars, as indicated by prop-
erty subsetting between operated/parked and timeSlice, and generalisation between cars
and operated/parked cars. Separate classes are added for operated and parked cars in case
there are properties only used during these periods (Bock 2000) or to specify membership
conditions on separate classes (conditions could be specified on cars in general by referring
to the slice properties).25 John’s car identifies particular time slices during which it is oper-
ated and parked.26 These two instances are distinct, but ‘views’ of a single thing, John’s car.
Part-part relations can be used between whole-portion properties, also shown in Figure 20.
The time slice for parked cars is linked by a happensBefore connector to the operated car
slice. The connector specifies temporal ordering links between instances of parked and
operated portions of John’s car, such those shown at the bottom right of Figure 20.27 Part-
part relationships between whole-portion properties for space can be modelled similarly
to Figure 20.

498 C. BOCK AND C. GALEY

Figure 20. Time slice modelling.

Modelling objects that occupy space slices, as illustrated in Figure 18, assumes whole-
part and part-part links come into and go out of existence when objects are put in and
removed from their containers, as if links were occurrences (Welty and Fikes 2006) (see
Section 3.1 about links). For example, in Figure 18, the link between John’s car and its
engine lasts from when the engine is installed to when it is removed for repair. Link
occurrences enable whole-part properties to identify entire object occurrences, rather than
slices, with the times during which objects are in their containers reflected in whole-part link
occurrences. This is necessary for modelling part-part relationships between objects occu-
pying space slices, because these usually exist for different time intervals than whole-part
relationships. For example, in Figure 18, there are two sets of link occurrences between the
engine and wheels in John’s car. One starts when the wheels are installed in the car and
ends when they are removed for maintenance, and another set starts when the wheels are
reinstalled and ends when the engine is removed for repair. The part-part links between
engine and wheels occur at different times than the whole-part links between John’s car
and its engine and wheels.

Figure 21 shows a model of link occurrences with some of the examples in Figures 6 and
20. It uses association classes (SysML association blocks) at the model level, notated as dashed
lines joining association lines to association class rectangles. Link occurrences are added to

JOURNAL OF ENGINEERING DESIGN 499

Figure 21. Link occurrences.

the logical library and generalise association classes in system models (classification of
object occurrences is shown in the names of instances). The association in this example
classifies a link between John’s car and its engine. This link (as an occurrence) starts when
the engine is installed in John’s car and ends when it is removed for repair. Another
link would be needed for when the engine is reinstalled in the car.

As a prelude to Section 5, Figure 21 facilitates link modelling for engineers by adding the
Association metaclass from UML to the metamodel in Figure 9, Section 3.1, and a metaas-
sociation identifying the properties on their ends. Associations at the model level must
specialise LinkOccurrence or one of its specialisations. This defines a pattern of using the
engineering library that tools can apply automatically to system models. It can be applied as
engineers create associations through graphical interfaces, or when models are complete
enough for analysis. Engineers would only see their own diagrams, without generalisation
and classification links to the library and metamodel, while reasoners could operate at the
logical layer of the library. Engineers would use familiar terms and still have the benefits of
temporal abstractions inferred automatically.

5. Requirements modelling in space and time

Systems exist in both space and time, but systems modelling languages typically treat them
separately, using different terms for the same concepts, complicating automated integra-
tion with other specifications. In particular, system modelling typically treats structure as
only spatial and behaviour as only temporal. This prevents specifying objects existing in
time and behaviours carried out in space. It leads to different terms for when objects exist
and when behaviours are carried out, even though these are the same concept if space and

500 C. BOCK AND C. GALEY

time are treated together. It prevents applying geometrical notions to time, such as desired
structural effects holding over periods of time, as needed system requirements.

The systems modelling capabilities proposed in Section 4 can address this problem,
but need to be more accessible to engineers. This section adds engineering concepts for
the models of Section 4 using the integration techniques of Section 3.2. Section 5.1 intro-
duces classification of objects and behaviours over space and time together. Section 5.2
adds engineering concepts for the new kind of composition in Section 4.2, to facilitate
modelling of desired system effects. Section 5.3 introduces basic concepts used in systems
engineering processes.

5.1. Objects and behaviours

The most basic kinds of things in systems are commonly taken to be objects and behaviours,
where behaviours are changes to the objects involved in them. Behaviours are usually
treated as distinct from objects, but they cannot exist separately, and have many com-
monalities. For example, objects and behaviours occur in space and time, though terms
for this usually differ between objects and behaviours. Objects come into existence at par-
ticular times, occupy space over time, then go out of existence. Similarly, behaviours start
at particular times, involve objects changing over time and space, then come to an end.
The phrases ‘come into existence’ and ‘start’ have the same meaning, as do ‘go out of exis-
tence’ and ‘end,’ they only differ in applying to objects or behaviours, respectively. Similarly,
the phrase ‘occupy space’ is used with objects, and ‘involve objects’ with behaviours, but
ultimately both occur in space. Behaviours also have characteristics and relations to other
objects and behaviours, just as objects do, such as how much they cost, who is responsible
for them, and other behaviours that happen before, during, and after them.

Figure 22 specialises the logical metamodel from Section 3.1 to represent objects and
behaviours and their commonalities. The engineering library (M1) introduces occurrence
classes for behaviour and objects, with an association for linking behaviour occurrences
with object occurrences involved in them (involves).28 An example model specialises these
for controlling the speed of a car (notated as a SysML activity). The model subsets the
involves property to identify the particular car, road, and person involved in controlling
speed (these properties appear in the activity as object nodes29). Constructing models from
the library is facilitated by a general systems engineering language in the metamodel of
Figure 22. Specialised metaclasses are introduced for models of behaviours and objects
(instance arrows from system model elements are omitted, for simplicity). A metaprop-
erty is added to identify the involves properties in behaviour models (involvesProperty).
Behaviour and objects as classes can generalise each other (at M1), but additional con-
straints are needed for them to happen in space and time by relating them to an engineer-
ing library for general systems:

• Behaviours and objects at the model level must specialise BehaviorOccurrence and
ObjectOccurrence or one of their specialisations, respectively, and vice versa.

• The involves property and all its subsetting properties (recursively) must be the value
of the involvesProperty of their owning behaviour, and vice versa (this is notated
with a double dashed arrow from the involves properties, omitted from the subsetted
properties, for simplicity).

JOURNAL OF ENGINEERING DESIGN 501

Figure 22. Objects and behaviours, model and metamodel.

The above defines a pattern of using the engineering library that tools can apply auto-
matically to system models. Figure 22 applies it by specialising the Controlling Speed
activity from BehaviorOccurrence, and Car, Road, and Person from ObjectOccurrence, and
by subsetting the activity properties csys, ref, and driver, from involves. Tools can apply the
pattern incrementally as engineers create behaviours and objects, and add object nodes
to activities through graphical interfaces, or it can be applied when models are complete
enough for analysis. Engineers would only see their own diagrams, without generalisation
and classification links to the library and metamodel, while reasoners could operate at the
logical layer of the library. Engineers would use familiar terms and still have the benefits of
temporal abstractions inferred automatically.

The engineering library in Figure 23 specialises the logical one in Figure 16, Section 4.1,
for more commonly used terms. Object occurrences use ‘exists’ instead of ‘happens,’ while
behaviour occurrences use ‘where’ and ‘elsewhere’ instead of ‘inside’ and ‘outside.’ The
engineering relationships refer to occurrences in general, enabling object occurrence to
exist before and when others do, or before and during behaviour occurrences, as well as

502 C. BOCK AND C. GALEY

Figure 23. Objects and behaviours, space and time relationships.

Table 1. Object, behaviours, and their space–time relationships.

Kind Of Occurrences Time (happensDuring/Before) Space (inside/outsideOf)

Object-Object Exists when/before another does Exists in the same or smaller region of
space as another or a separate region of
space

Behaviour-Behaviour Happens during/before another Involves objects changing in the same or
smaller region of space, or in separate
regions of space.

Behaviour-Object Object-Behaviour Behaviour happens while/before
object exists (or vice-versa)

Behaviour happens in same or smaller
region of space as object exists, or a
separate region of space (or vice-versa)

behaviour occurrences to happen (objects to change) inside or outside other object occur-
rences. Objects that are always within the space and time of other objects are not very
common, because objects by definition are separable in space, even if they cannot function
that way. Behaviours within the space and time of others are more common, such as assem-
bly behaviours occurring within both the spatial and temporal extent of manufacturing
behaviours, or within the extent of objects, such as factories. Objects can obviously be com-
pletely separate from (without) each other in space and time, and similarly for behaviours,
such as extraction of raw material in mines occurring at separate times and places than
factory behaviours in the same supply chain.

Summarising, the logical and engineering space and time libraries (Figures 16 and 23)
have two taxonomies, one for occurrences (object and behaviour) and another for relations
(within, without and their subsets/supersets), giving eight combinations of occurrences
related in space and time. The second and third rows of Table 1 covers four of these,
between occurrences of the same kind, and bottom row the remaining four, between occur-
rences of different kinds, for example, manufacturing behaviours in a factory, or scaffolding
during aircraft assembly.

5.2. States

The concept of portions from Section 4.2 can be used to specify desired system effects
(requirements, see Section 1), but forces engineers to understand four-dimensional mod-
elling, rather than specify their intent directly. To construct the model in Figure 20,
Section 4.2, engineers must manually:

JOURNAL OF ENGINEERING DESIGN 503

Figure 24. State metamodel.

(1) Create occurrence classes for systems or components during which the effects hold
(cars being operated or parked), and generalise them by system or component classes
that are not limited in time (cars).

(2) Create properties on the system or component classes that are not limited in time,
to identify systems or components during which the effects hold (properties of cars
identifying parked and operated cars). Then:
(a) Type the properties by the occurrence classes created in step 1.
(b) Subset the properties from the time slicing property in the occurrence model

library.
(3) Type connectors between the properties in step 2 by the time ordering property in the

occurrence model library.

Figure 24 facilitates portion modelling in engineering requirements with a metamodel
for the pattern above. It adds a metaclass for properties specifying occurrences of any kind
(OccurrenceProperty), and specialises it for occurrences during which particular conditions
hold (StateProperty).30 The metamodel for process plans in Figure 14, Section 3.2 is updated
to enable occurrence properties, including state properties, to be linked by connectors for
ordering desired effects in time (Succession). Additional constraints on models relate state
properties to the time model:

• State properties at the model level must be typed by the same occurrence class that
owns the state property, or one of owner’s specialisations.

504 C. BOCK AND C. GALEY

Figure 25. Multiple objects in space and time, time slices.

• State properties at the model level must subset timeSlice.
• Successions at the model level must be typed by happensBefore.

The metamodel and constraints above define the same pattern of using the time and
portion models as the steps above, which tools can apply automatically. Figure 24 applies
the pattern by specialising ParkedCar and OperatedCar (types of the parked and operated
state properties) from Car (owner of parked and operated), subsetting parked and oper-
ated from timeSlice (state property multiplicities default to *), and typing the succession
connector between them by happensBefore. Tools can apply the pattern incrementally as
engineers create and order states of objects and behaviours through graphical interfaces, or
it can be applied when models are complete enough for analysis. Engineers would only see
their own diagrams, with a «state» keyword as in Figure 24 (or other notation) indicating
state properties, instead of generalisation and classification links to the library and meta-
model, while reasoners could operate at the logical layer of the library. Engineers would
specify desired effects (requirements) in more familiar terms and still have the benefits of
logical abstractions inferred automatically.

The state metamodel facilitates specifying desired effects and their timing on multi-
ple components of a system. For example, self-guided cars might be allowed to move
only when the road ahead is clear, as illustrated in Figure 25 (see Section 4.2 about these
space–time graphs). The road appears as a horizontal rectangle because it does not move,
lightly cross-hatched when it is clear and darker otherwise. The car appears as shaded
rectangles above and below the road when it is not moving, and black shapes when it is
operated (rectangles when it is stationary and a parallelogram as it moves into, along, and
out of the road). The car’s control system is expected to detect whether the road ahead is
clear and limit its actions accordingly. Figure 26 shows a model for the operating environ-
ment of such control devices. The operating environment has properties identifying the car
(in its operated state) and the road, with a connector between these properties indicating
that the property for the road identifies the portion in the direction the control system is
intending to take the car. Operated cars and roads have state properties identifying their
(sub) states at the bottom (generalisations implied by states not shown for simplicity). These

JOURNAL OF ENGINEERING DESIGN 505

Figure 26. Sequencing states of multiple objects.

properties appear in the structure compartment of the operating environment at the top.
They are linked by connectors typed by the library relation for occurrences happening dur-
ing others (see Section 4.1). This limits moving (as a time slice of the car) to occur only during
periods that the road ahead is clear (as a time slice of the road).

Some desired effects hold for all time, and can defined without including systems achiev-
ing those effects at all. For example, cars should not be parked on roads (defined as places
that cars move through). Figure 26 specifies this using the library relation for occurrences
without (separate from) each other (see Section 4.1). This indicates that roads and parked
cars occur either in separate places, such as cars parked in driveways next to roads, or at
separate times, such as cars parked in places that later have roads built through them, or
both. This relationship is an association in Figure 26, rather than a connector, which means
it applies to cars and roads identified in all structure diagrams. In particular, it applies to
cars identified by the operating environments of Figure 26, indicating that self-guided cars
should not park where other cars will be moving through.

5.3. Requirements, designs, and tests

The engineering concepts of Sections 5.1 and 5.2 facilitate specification of desired sys-
tem effects (requirements, see Section 1), but do not provide others typically used, such as
requirements, designs, and verification tests. This section adds these while going through
an example engineering process. Following the method applied in previous sections (out-
lined in Section 3.2), the examples are modelled logically first to ensure they classify the
real or simulated things intended, then engineering concepts are introduced to make the
models accessible to engineers and automatable in modelling and analysis tools.
To model requirements as desired effects of a system on its operating environment
(see Section 1), requirements and designs are treated as specifying behaviours (involving

506 C. BOCK AND C. GALEY

Figure 27. Requirement and design models.

objects) of the environment and the system together (total system), but separate parts of
these behaviours (Bock et al. 2010):31

• Requirements describe the (behaviour of) surroundings of a hypothetical (unspecified)
system while it is operating.

• Designs specialise (elaborate, refine) requirements to describe the system (behaviour).

Figure 27 shows an example of this, adapted from (Dvorak, Amador, and Starbird 2008):

• The PictureTaking requirement is a kind of behaviour occurrence (from the engineer-
ing library, see Section 5.1) describing pictures available during (by) specified times,
where pictures are object occurrences involved in the requirement, identified by a result
property subset from the engineering library. Each particular picture and time can be
given in specialisations or instances of the requirement, which might be specialisations
or instances of designs, by generalisation. The time the picture is due is specified as a
generic occurrence, but could be a more specialised element for time only. PictureTaking
is a requirement because it only covers behaviours external to potential system designs.

JOURNAL OF ENGINEERING DESIGN 507

• The requirement in the previous bullet generalises a partial system design PictureTak-
ingD1, which introduces a camera (object occurrence) to produce the required picture,
identified by a pp property subset from the engineering library. The design inherits
requirement elements, shown in grey, and connects to them to the added design ele-
ment. The camera’s state of taking a picture is mandatory, indicated with the SysML
notation for part multiplicity in the upper right corner (state multiplicities are optional by
default see Section 5.2). The produces connector specifies that the camera’s state yields
the required picture.26,32 The = (equals sign) connector links properties that are to have
equal values (binding in SysML). In this case the camera points to the same location when
taking the picture as the one required to be photographed.

• The partial design in the previous bullet generalises a more complete one at the bottom
of Figure 27, introducing elements that prepare the camera to take pictures (general-
isations and subsets to the engineering library are omitted for simplicity). This design
inherits the partial design elements, shown in grey, and connects them to a platform
supporting the camera and a heater that warms it. The platform turns until it is oriented
so the camera points toward the required location, while the heater operates until the
camera is warm. Platform turning and heater operation timing are constrained by hap-
penWhile connectors to ∼platformReady and ∼warm states of the design class and the
camera, respectively. The tilde (∼) notation indicates a complementary state, where a
state and its complement cover the entire lifetime of their object, but do not overlap. The
happensWhile relationship links occurrences that happen (start and end) at the same
time (analogous to the equal relation in Allen [1983]), an addition to the logical library in
Figure 16, Section 4.1. The happensWhile connectors in Figure 27 specify that the plat-
form is turning when it is not in the proper orientation, while the heater is operating
when the camera is not warm.26,33 Proper orientation of the platform is specified in a
constraint on the platformReady state (using SysML’s note notation) as the result of a
function fixppO given the location to be photographed. This is a state of the design class,
rather than the platform, because it involves properties of the camera and platform. The
camera must be warm and powered to take pictures, as specified by a generalisation
between states on the upper left of Figure 27.

The requirement and designs in Figure 27 specify temporal constraints on object and
behaviour occurrences that result in a picture produced by the required time. The require-
ment specifies that the picture is to exist during the due time. The initial design specifies a
device to take the picture and when it should do so (the produces property subsets hap-
pensBefore, shown on the upper right of the figure). The camera can only take pictures
when it is warmandpowered (shownon themiddle right of the figure; a design element for
power can be added in a further specialisation to the design), and pointing at the required
location. The platform turns when it is not oriented properly (calculated from the required
picture location) and the heater operates when the camera is not warm enough to take a
picture.

Figure 27 applies a pattern of specifying requirements and designs using generalisation
and the engineering library:

(1) Create behaviour occurrence classes for requirements that have parts and connectors
played by objects and links between them in the operating environment of the system

508 C. BOCK AND C. GALEY

Figure 28. Requirement and design metamodel.

being designed, typed by object occurrences and their associations created or reused
from existing libraries.

(2) Create behaviour occurrence classes for designs that specialise the requirements to be
satisfied above, adding parts and connectors for the systembeing designed or its parts
and connectors (typed by object occurrences and their associations created or reused
fromexisting libraries), alongwith connectors toparts inherited from the requirements.

(3) Repeat the second step as needed to create specialised behaviour classes for refined
designs that specialise previously created ones, adding system parts and connectors
between them or other system and requirement parts.

Figure 28 facilitates requirements and design modelling with a metamodel for the pat-
tern above. It adds metaclasses for requirements and designs (as behaviours), with satisfac-
tion and refinement relations between them (as generalisations). Requirement satisfaction
is restricted to link designs to requirements (using property redefinition, see Section 3.1),
while design refinement links specialised (more elaborated) designs to more general ones
(redefinitions on refinement are omitted for simplicity). Figure 28 applies the pattern to
the system model in Figure 27, using SysML’s dependency notation instead of generalisa-
tion arrows, labelling them (and classes) with terms derived from the engineering-specific
metaclasses. This provides a view accessible to engineers, while logical reasoners can oper-
ate on inferred temporal concepts (by metaclass generalisation) to determine whether
designs are consistent with requirements. Tools can apply the pattern incrementally as

JOURNAL OF ENGINEERING DESIGN 509

Figure 29. Total system metamodel identifying design and requirement objects.

engineers create requirements and designs through graphical interfaces, or when mod-
els are complete enough for analysis. Engineers specify desired effects (requirements) and
how they are achieved (designs) in more familiar terms, and still have the benefits of logical
abstractions inferred automatically.

The concepts in Figure 28 are more accessible to engineers than Figure 27, except
designs are often taken to be objects rather than behaviours, as in Figure 10 in Section 3.2.
Figure 29 accommodates this with an additional metaclass for total systems (designs in their
operating environments, see beginning of this section). Total systems carry metaproperties
sysPart and envPart identifying model properties for objects in the system and in the oper-
ating environment, respectively (generalised by involvement in behaviour, not shown on
system parts for simplicity), as well as sysDesign and sysReq for the kind of object play-
ing those parts. The metaproperties are computed (derived in SysML) from the structure
of total systems, specifically from whether the parts are inherited from requirements or
not (derived properties are indicated by a forward slash before their names). In PictureTak-
ingD1, pp is a system part because it is not inherited from the requirement PictureTaking in
Figure 28, while result is an environment part because it is inherited from a requirement. The
kinds of things playing these parts (Camera and Picture, respectively) are system designs
and requirements, respectively. To reach typical engineering views of requirements and
designs as in Figure 10, another kind of satisfaction relationship could be added between
systems designs as in Figure 29 (kinds of objects playing system parts) and requirements as
in Figure 28 (behaviour of system and environment during operation).

510 C. BOCK AND C. GALEY

Figure 30. Test case models.

Engineers typically take designs to be objects, because this stage of development is
often concerned only with specifying system structure, leaving behaviour to be predicted
by analysis or observed by prototyping, and compared to requirements. However, require-
ment and design engineers develop tests cases, which specify behaviours involving system
objects (as designed), producing results that can be compared to requirements. Analysis
engineers add behaviour specifications for simulating these test cases, oftenmathematical,
while prototyping engineers manufacture example systems and operating environments
to carry out the tests. Designers use the results of analysis andprototyping toupdate system
structure and develop more test cases as needed.

Figure 30 shows an example test case model for one of the designs in Figure 28 and
Figure 29. The TestPictureTakingD2behaviour occurrence class copies the PictureTakingD2
design, but since tests can fail, it loosens multiplicities on some parts and connectors to be
optional (lower multiplicity of zero):

• Temporal connectors, such as those typed by happensDuring and happensWhile.
• Connectors between system and requirement (environment) output parts, such as pro-

duces, and output parts themselves, such as result (these are subset from additional
engineering library properties subset from involves, see Section 5.1).

• State properties, such as takingPicture, which is mandatory in the design (states are
optional by default, see Section 5.2).

Other connectors are unchanged, because they reflect the structure of the system
and placement in the operating environment that is supposed to exhibit the required
behaviour.

JOURNAL OF ENGINEERING DESIGN 511

The TestPictureTakingD2 class generalises a specific TestPictureTakingD2Case1 that
gives inputs and restricts outputs. It specifies a deadline and a location of the result, if
any, by a hypothetical picture of a particular star (an instance specification, see footnote 6
in Section 3.1).34 This test case generalises classes of occurrences that pass or fail the test.
Behaviour occurrences that pass the test conform to the original design by satisfying all its
mandatory multiplicities, as indicated by generalisation to the design. Occurrences that fail
do not conform to the design by not satisfying some design multiplicities (such failing to
produce a picture or produce it by the deadline), as indicated by the lack of generalisation
to the design.

Figure 30 applies a pattern of specifying tests using generalisation, multiplicities, and
the engineering library:

(1) Create behaviour occurrence classes for tests by copying designs to be tested.
(2) Subset input and output properties in the above from input and output, respectively,

in the engineering library.
(3) Change mandatory multiplicities to optional for temporal connectors, connectors

between system and requirement (environment) output parts, output parts, and state
properties.

(4) Create behaviour occurrence classes specialising the test classes above for specific
test cases, giving values to input properties and restricting potential values of output
properties.

(5) Create two behaviour occurrence classes specialising the specific test case classes
above, one specialised from the design being tested and the other not.

Figure 31 facilitates test modelling with a metamodel for the pattern above. It adds a
metaclass for test case behaviours, along with metaproperties for refinement, and passing
and failing cases (via generalisation). The figure also adds metaproperties for designs to
identify their tests (verifiedBy), which is subset into metaproperties for passing and failing
those tests (passes and fails), with values computed as all the pass and fail test cases identi-
fiedbyeach test case (Lee et al. 2012). The failsmetaproperty subsets ametaproperty added
to relate behaviours where one is intended to conform to (specialise) another, but doesn’t
(failsAs).35 Figure 31 also adds metaproperties to behaviours for input and output proper-
ties, subsetting involvedProperty. Additional constraints on models using this metamodel
are:

• Pass and fail test cases at themodel levelmust specialise test cases giving values to input
properties (and possibly restricting potential values of output properties).

• Test cases specialised intopass and fail cases abovemustbe specialisedbehaviouroccur-
rences that generalise designs they verify, copy their properties, and modify them with
optional multiplicities, per step 3 above.

• Input and output properties at the model level must subset input and output, respec-
tively, from the engineering library in Figure 30.

The metamodel and constraints above define the same pattern of test modelling as the
steps above, which tools can apply automatically. Figure 31 applies the pattern to the sys-
tem model in Figure 30, using SysML’s dependency notation (instance arrows from the

512 C. BOCK AND C. GALEY

⊆

Figure 31. Test case metamodel.

lower ones are omitted for simplicity), labelling them (and classes) with terms derived from
theengineering-specificmetaclasses. This provides a viewaccessible to engineers for classi-
fying simulated or prototyped test occurrences as passing or failing, while logical reasoners
can operate on inferred temporal concepts (by metaclass generalisation) to determine
these classifications. Tools can apply the pattern incrementally as engineers create require-
ments and designs through graphical interfaces, or whenmodels are complete enough for
analysis. Engineers specify tests in more familiar terms, and still have the benefits of logical
classification inferred automatically.

This model of testing improves on SysML, which treats test cases as behaviours (or
object-oriented operations using these behaviours), but treats passing and failing as values

JOURNAL OF ENGINEERING DESIGN 513

of return parameters (verdict) for each test occurrence. This complicates test modelling
with additional subbehaviours to return test results, rather than using classification of test
occurrences as designs (passing) or not (failing). Returning test results from behaviours
prevents them from indicating which requirement failed when the same behaviour
tests multiple requirements, whereas the model presented here can record which
mandatory requirement properties and connectors are not satisfied by a test occurrence.
Object-oriented operations with behaviours in SysML can address this with multiple
operations, each verifying its own requirement on same object/behaviour, but this compli-
cates test modelling with separate tests for each requirement. SysML also does not provide
a metamodel (engineering terminology) for classifying passing and failing test occurrences,
only for results of each test occurrence individually. SysML uses dependencies to indi-
cate which tests verify which requirements and designs, which prevents logical checking
between them available by generalisation.

6. Summary and future work

This paper outlines an existing method for integrating ontology and engineering, then
applies it to a new problem (four-dimensional requirements modelling), extending prior
results. Requirements are taken to be specifications of structure and desired behaviour
of objects in the environment of a system or product being operated (Zave and Jackson
1997; Ingham et al. 2005; Bock et al. 2010). Designs are about the system itself, specify-
ing actions that cause required changes in environmental objects or behaviours. Required
behaviour in this paper is taken to be changes in environmental objects over time, rather
than actions causing these changes (designs). Since objects exist in space, this leads natu-
rally to behaviour and object specifications in space and time (four dimensions) (Partridge
2005;West 2011; Gruhier et al. 2016; Paul, Bradley, and Breunig 2015), rather than specifying
objects only in space and behaviour only in time.

Section 2 reviews related work, showing it is not sufficient to model four-dimensional,
effects-based requirements in engineering-specific ways. Most ontology applications to
engineering of any kind are separate from development of engineering-friendly modelling
languages. Applications of ontology to requirements are primarily about actions taken by
a system to achieve required effects (designs), as are behaviour specifications in systems
modelling languages, such as SysML. Prior work on logical behaviour modelling for SysML
is also action-oriented (Gruninger and Menzel 2003; Bock and Odell 2011), complicating
requirements modelling as described above. Most formalisations of space and time that
might be integrated with SysML are only of abstractions such as spatial regions and time
intervals (Randell, Cui, and Cohn 1992; Allen 1983), not objects or behaviours, while ontolo-
gies of space and time redundantly link them to behaviours and objects (Borgida and
Brachman 2010; Arp, Smith, and Spear 2015; Niles and Pease 2001), rather than treating
systems as inherently existing in space and time.

Section 3 summarises earlier work on making ontology accessible to engineers using
separate but integrated layers for engineering and logical languages (Bock et al. 2010; Bock
and Odell 2011). These layers are related by generalisation in models and metamodels, with
metamodels specifying patterns of specialising logical models to engineering. Tools can
apply the patterns incrementally as engineers work through graphical interfaces, or when
models are complete enough for analysis. Engineers only see their models, while logical

514 C. BOCK AND C. GALEY

reasoners operate at the logical layers, with results translated back to engineering. This
section also introduces models of space and time and of models themselves (metamodels)
used in the rest of the paper.

Sections 4 and 5 apply the method above and extend prior work to specify required
effects of systems and products on objects in their environment during operation in
space and time (four dimensions). Section 4 updates and extends the logical models in
Section 3 to support four-dimensional modelling, while Section 5 extends these for engi-
neering accessibility and application Section 4 unifies space and time models around
things having these characteristics, which simplifies time modelling by applying geomet-
rical notions to it and relates it more directly to things being engineered (Partridge 2005;
West 2011; Gruhier et al. 2016; Paul, Bradley, and Breunig 2015). System effects are spec-
ified as structural conditions holding over portions of space and time, using a kind of
composition appropriate for portions of continua (Winston, Chaffin, and Herrmann 1987;
Odell 1994), rather than assembly-style composition in typical system-component break-
downs. Portions of space and time occupied by systems can be treated geometrically,
for example, as ‘slices’ of entities over space and time, with required conditions specified
for them.

Section 5 extends prior results on logical models of system structure and action-oriented
behaviour (Bock et al. 2010, Bock 2013; Bock and Odell 2011; Bock 2003a, 2003b) by treating
objects and behaviours as occurring in both space and time. It combines temporal relations
from logical action modelling with the results of Section 4 to specify the order and duration
of desired structural effects, separately from actions that achieve them, but easily integrated
with actions defined in system designs. Treating objects and behaviours as occurring in
space and time also enables spatial relations normally restricted to objects to be used for
specifying the space over which objects change when involved in behaviours. The result
is logically-based models of system behaviour in space and time that are adaptable to
both system requirements and designs. This is demonstrated by an example engineering
process starting with requirements specifying the operating environment of potential sys-
tems, then system designs intended to meet those requirements, and finally tests to verify
whether they do. The example presents logical models first to ensure they classify the real
and simulated things intended, then introduces engineering concepts for accessibility and
automation in modelling and analysis tools.

Work is ongoing to increase coverage of libraries and metamodels from this and earlier
papers, to support state machines, object-oriented behaviours, and interfaces/ports in the
same logically derived way, in a major upgrade to SysML (SysML 2) (OMG 2017c), as well as
apply automated reasoners to engineering models constructed from these (Havelund et al.
2016), in a similar way that other engineering analysis is integrated with systems models
(Bock et al. 2017; OMG 2018). SysML 2 development also includes pilot implementations
demonstrating automatic specialisation of logical and general systems libraries as mod-
ellers use a textual language with more familiar concepts (metaclasses and properties),
giving them the benefits of ontology without training in it. Future work on these imple-
mentations will introduce graphical interfaces with additional palettes that link ontology
and engineering in the same way, compared to current palettes that only instantiate meta-
models. This will enable engineers to extend logically defined libraries (upper ontologies
and general systems models) by constructing models in the usual fashion, without being
aware of using ontologies. Additional notation is planned for SysML to show which library

JOURNAL OF ENGINEERING DESIGN 515

elements each model element specialises, to avoid improper extensions of the modelling
language that are often used for this purpose.

Work on a number of logical and expressiveness problems is also ongoing:

• Requirement satisfaction is stronger than generalisation, as used in Sections 3.2 and
5.3, because only one conforming instance of a design generalised by its requirements
is enough to show logical consistency. For requirement satisfaction, all instances of a
design (behaviour) in conforming environments (those that operate the system prop-
erly) must conform to its requirements. This is being addressed by checking consistency
of multiple copies of a design, each generalised by a copy of requirements with one or
more effect (non-operating) elements negated (for all effect elements). If any of these
have a conforming instance, then the design does not satisfy its requirements because
it does not achieve all required environmental effects when it is operated properly.

• The test case modelling pattern in Section 5.3 needs additional constraints to avoid acci-
dental classification of passing test occurrences as failing, because optional multiplicities
in failing tests allow (passing) values, rather than specifying failure with zero upper
multiplicity bounds. Failing test case classes need to union copies that each reduce
one optional multiplicity to zero (for all optional multiplicities) to ensure conforming
instances are missing at least one value required for passing.

• The requirement and design metamodel in Section 5.3 could provide better support for
designs that are used as requirements for further designs (such as a car design that only
specifies the required effects of an engine). The metamodel enables a model element to
be classified as both a requirement and a design, but does not indicate when it is being
used as one or the other. This can be addressed by metamodels for projects that identify
which model elements are requirements and which designs for each project separately
(as metaproperties, rather than metaclasses). SysML 2 development (see above) includes
a metamodel of projects that could be extended this way.

Notes

1. Sometimes the term ‘requirement’ includes descriptions of products developed at early stages,
such as a marketing requirement on the weight of lawnmowers, or the color. In the terminology
of this paper, such specifications are designs. The requirement is to be able to lift the lawnmower
or that it is pleasing to look at.

2. References to SysML in this paper include UML unless otherwise indicated (SysML includes most
of UML).

3. Control system requirements give desired effects on their operating environments, but numer-
ically rather than ontologically. Typically these are desired values (steady states, set points) for
numeric characteristics (variables) of the system under control, and acceptable ranges for the
values of numeric characteristics as they reach desired values (Dorf and Bishop 2017). Control
requirements might also give desired relationships between characteristics that change over
time, possibly varying by ‘modes’ of systems under control (Morse 1995).

4. This enables UML to be extended for transformation to theWebOntology Language (OWL) (OMG
2014; W3C 2012), a standard for interchanging SROIQ ontologies.

5. UML/SysML classes/blocks and generalization are equivalent to OWL classes and subclassing,
respectively.

6. Dashed arrows for classification, and dividing lines between classes and instances are used in
this paper for illustration, but are not SyML/UML notation. Instances here are actual, imagined,
or simulated things, reflecting the meaning of ‘onto’ (real) in ‘ontology.’ Figures in this paper

516 C. BOCK AND C. GALEY

notate themwith SysML/UML instance specifications, which are model elements, similar to OWL
individuals, rather than real things.

7. Since four-wheel drive vehicles are also cars, John’s car might be four-wheel drive or not. Models
capture knowledge at the time they are created, which might be incomplete.

8. SysML properties are equivalent to OWL properties.
9. Properties at opposite ends of SysML associations are equivalent to OWL inverse properties.

10. SysML subsetting properties are equivalent to OWL subproperties.
11. SysML multiplicities are equivalent to OWL cardinality restrictions.
12. SysML redefining properties are equivalent to OWL universal property and cardinality restrictions

(applied to all values), except they can be new properties set equal to the inherited (redefined) one.
13. Part-part relationships are equivalent to conjunctions of OWL complex role inclusions (Krdzavac

and Bock 2008). UML calls this ‘internal structure’, and SysML just ‘structure’. They are analogous
to connections in mereotopology (Cohn and Varzi 2003).

14. Connectors inherit like properties do, see discussion of Figure 14 in Section 3.2.
15. Metaclasses in this paper classify model (M1) elements, including elements that are not classes,

such as properties (Scott et al. 2004). Only M2 Class and its subclasses categorize M1 classes.
16. Metamodels and models are analogous to syntax and semantics in language theory. Syntax gives

rules for speaking or writing sentences in a language, while semantics gives rules for interpreting
these sentences in terms of real, imagined, or simulated things (Genesereth and Nilsson 1987;
Bock et al. 2006). Metamodels are an abstract form of syntax that omits visual or other concrete
aspects of syntax (Bock 2003b; OMG 2015b).

17. Dependencies do not have implications for instances like generalizations do (see Section 3.1),
making it unclear whether requirement satisfaction inherits to specialized blocks. SysML currently
reproduces some generalization semantics unnecessarily in requirement satisfaction.

18. SysML uses a different relationship (stereotyping) between its metaelements and UML’s, but the
effect is the same as generalization.

19. This could be highlighted by labelling generalization arrows with «satisfy» and «deriveRqt». These
would come from basing SysML’s Satisfy and DeriveRqt stereotypes on UML Generalization rather
than Dependency.

20. Activities are classes in SyML and can be specialized, along with links (redefinitions) between ele-
ments of special and general activities (actions and control flows), but these elements are not
properties, making it unclear whether they inherit to specialized activities and how redefinition
applies to them.

21. A superscripted -1 is used in this paper to indicate a property on the other end of an association
from another property, see footnote 9 in Section 3.1.

22. Logical metaproperties also generalize engineering-specific ones, providing an ownedStep
metaproperty for easily finding steps among other properties of process plans, as well as
fromStep and toStep restricting sequencing to step properties.

23. The latter option was suggested by Jim Logan.
24. The association for no overlap in time is narrowed to the more commonly-used ordering in time

(happensBefore).
25. Conditions on portions are taken to be sufficient, rather than necessary, meaning portions will

‘expand’ until the conditions are no longer true. For example, time slices for parked cars will take
up all the time between neighboring portions when the car is not parked.

26. Portion properties are assumed to support an unlimited number of values, see multiplicities in
Section 3.1.

27. The temporal connector in this example must have multiplicity 1 on both ends, which is the
default (connector multiplicities apply only to values of the properties being connected). This
ensures every occurrence (value) of a step infers exactly one occurrence (value) for the step after
it, a logical equivalent of execution semantics (Bock and Odell 2011; OMG 2017b). When the same
step happens more than once, resulting in multiple values (occurrences) per step, temporal con-
nectors must be typed by an intransitive (but not anti-transitive) specialization of happensBefore.
This enables step properties to have some values (occurrences) that happen earlier (transitively)
than multiple values of the next step, and still satisfy one-to-one connector multiplicities. This

JOURNAL OF ENGINEERING DESIGN 517

intransitive temporal precedence is the logical equivalent of token movement in an operational
token-based semantics (Bock 2003a).

28. This includes objects that are not changed during the behavior, but needed for it to occur. For
example, the road in Figure 22 is not affected by speed control, but is necessary for it to happen.

29. See adjunct properties in SysML (OMG 2017a).
30. This use of the term ‘state’ is not the same as in action-oriented state machines, which are for

reacting to events (Bock 2000; Friedenthal et al. 2014).
31. This paper uses total systems for operation, but they can be specified for other lifecyle stages,

showing interactions between systems and their environments during inspection, main-
tenance, disposal, and so on. Total systems for operations are similar but more detailed than
SysML use cases.

32. This connector must have multiplicity 1 (which is the default) at least on the takingPicture end, to
ensure each picture is taken by exactly one of these camera states (see footnote 27 in Section 4.2
for more about connector multiplicities).

33. This connector must have multiplicity 1 on both ends to ensure each operational state of the
platform and heater is paired with exactly one negative state it is meant to bring to an end, and
vice versa.

34. Equals signs in property compartments in this paper indicate all instances of the class must have
the specified value for the property (SysML has a weaker meaning for this notation). An ele-
ment symbol (∈) is used in this paper to indicate property values must be drawn from a specified
set. These are equivalent to OWL object property restrictions ObjectHasValue and ObjectOneOf,
respectively.

35. This means there exists at least one occurrence of a behavior that is not an occurrence of another
(‘antigeneralization’).

Acknowledgements

The authors thank Chris Delp for leadership in promoting this work, Daniel Dvorak for clarifying state
modelling of requirements, Al Jones for many helpful comments and discussion, and Moneer Helu
and Tim Sprock for the example of process plan specialisation. Thanks also to Raphael Barbau and Ed
Seidewitz for their ongoingwork validating and informing some results of this paper with automated
reasoners and library specialisation, respectively, which will be reported in the future.

Identification of any commercial equipment and materials is only to adequately specify certain
procedures. It is not intended to imply recommendationor endorsement by theU.S. National Institute
of Standards and Technology, nor does it imply that the materials or equipment are necessarily the
best available for the purpose.

Disclosure statement

No potential conflict of interest was reported by the authors.

References

Allen, J. 1983. “MaintainingKnowledge about Temporal Intervals.”Communicationsof theACM26 (11):
832–843.

Ameri, F., Debasish, D., 2006. “An Upper Ontology for Manufacturing Service Description.” In
Proceedings of the 26th Computers and Information in Engineering Conference (Sep), 651–661.
doi:10.1115/DETC2006-99600.

Arp, R., B. Smith, and A. Spear. 2015. Building Ontologies with Basic Formal Ontology. Cambridge, MA:
MIT Press.

Baader, F., D. Calvanese, D. McGuinness, D. Nardi, and P. Patel-Schneider. 2010. The Description Logic
Handbook: Theory, Implementation, and Applications. 2nd ed. New York: Cambridge University
Press. doi:10.1017/CBO9780511711787.

https://doi.org/10.1115/DETC2006-99600
https://doi.org/10.1017/CBO9780511711787

518 C. BOCK AND C. GALEY

Banach, R., H. Zhu, W. Su, and R. Huang. 2014. “Continuous KAOS, ASM, and Formal Control System
Design across the Continuous/Discrete Modeling Interface.” Formal Aspects of Computing 26 (2):
319–366. doi:10.1007/s00165-012-0263-2.

Barbedienne, R., Penas, O., Choley, J., Rivière, A., Warniez, A., Monica, F., 2014. “Introduction of
Geometrical ConstraintsModeling in SysML forMechatronic Design.” In Proceedings of 10th France-
Japan/8th Europe-Asia Congress onMechatronics. doi:10.1109/MECATRONICS.2014.7018580.

Benavides, D., S. Segura, and A. Ruiz-Corte. 2010. “Automated Analysis of Feature Models 20 Years
Later: A Literature Review.” Information Systems 35 (6): 615–636. doi:10.1016/j.is.2010.01.001.

Berardi, D., D. Calvanese, and G. De Giacomo. 2005. “Reasoning on UML Class Diagrams.” Artificial
Intelligence 168 (1-2): 70–118. doi:10.1016/j.artint.2005.05.003.

Bernard, Y. 2012. “Requirements Management within a Full Model-Based Engineering Approach.”
Systems Engineering 15 (2): 119–139. doi:10.1002/sys.20198.

Bock, C. 2000. “A More Object-oriented State Machine.” Journal of Object-Oriented Programming 12
(8): 36–38.

Bock, C. 2003a. “UML 2 Activity and Action Models.” Journal of Object Technology 2 (4): 43–53.
doi:10.5381/jot.2003.2.4.c3.

Bock, C. 2003b. “UML without Pictures.” IEEE Software Special Issue on Model-Driven Development 20
(5): 33–35. doi:10.1109/MS.2003.1231148.

Bock, C. 2004. “UML2CompositionModel.” Journal ofObject Technology 3 (10): 47–73. doi:10.5381/jot.
2004.3.10.c5.

Bock, C. 2005a. “Systems Engineering in the Product Lifecycle.” International Journal of Product
Development 2 (1): 123–137. doi:10.1504/IJPD.2005.006672.

Bock, C. 2013. “Componentization in the Systems Modeling Language.” Systems Engineering 17 (4):
392–406. doi:10.1002/sys.21276.

Bock, C., R. Barbau, I. Matei, and M. Dadfarnia. 2017. “An Extension of the Systems Modeling Lan-
guage for Physical Interaction and Signal Flow Simulation.” Systems Engineering 20 (5): 395–431.
doi:10.1002/sys.21380.

Bock, C., and M. Gruninger. 2005b. “PSL: A Semantic Domain for Flow Models.” Journal on Software
and SystemsModeling 4 (2): 209–231. doi:10.1007/s10270-004-0066-x.

Bock, C., M. Gruninger, D. Libes, J. Lubell, and E. Subrahmanian. 2006. Evaluating Reason-
ing Systems. U.S National Institute of Standards and Technology Interagency Report 7310.
doi:10.6028/NIST.IR.7310.

Bock, C., and J. Odell. 2011. “Ontological BehaviorModeling.” Journal ofObject Technology 10 (3): 1–36.
doi:10.5381/jot.2011.10.1.a3.

Bock, C., X. Zha, H. Suh, and J. Lee. 2009. Ontological Product Modeling for Collaborative Design. U.S.
National Institute of Standards Interagency Report 7643. doi:10.6028/NIST.IR.7643.

Bock, C., X. Zha, H. Suh, and J. Lee. 2010. “Ontological Product Modeling for Collaborative Design.”
Advanced Engineering Informatics 24 (4): 510–524. doi:10.1016/j.aei.2010.06.011.

Borgida, A., and R. Brachman. 2010. “Conceptual Modeling with Description Logics.” In The Descrip-
tion Logic Handbook: Theory, Implementation, and Applications, edited by F. Baader, D. Calvanese,
D. McGuinness, D. Nardi, and P. Patel-Schneider, 375–401. New York: Cambridge University Press.

Borgo, S., and C. Masolo. 2010. “Ontological Foundations of Dolce.” In Theory and Applications of
Ontology: Computer Applications, edited by R. Poli, M. Healy, and A. Kameas, 279–295. Dordrecht:
Springer.

Buhne, S., Lauenroth, K., Pohl, K., 2004. “Why is it not Sufficient toModel Requirements Variability with
Feature Models?” In Proceedings of Automotive Requirements EngineeringWorkshop, 5–12.

Castaneda, V., L. Ballejos, L. Caliusco, and R. Galli. 2010. “The Use of Ontologies in Requirements
Engineering.” Global Journal of Researches in Engineering 10 (6): 2–6.

Catterson, V., Davidson, E., McArthur, S., 2005. “Issues in Integrating Existing Multi-Agent Systems for
Power Engineering Applications”, In Proceedings of the 13th International Conference on Intelligent
Systems Application to Power Systems (Nov). doi:10.1109/ISAP.2005.1599296.

Chen, R., Y. Liu, Y. Cao, J. Zhao, L. Yuan, and H. Fan. 2018. “ArchME: A Systems Modeling Language
Extension for Mechatronic System Architecture Modeling.” Artificial Intelligence for Engineering
Design Analysis andManufacturing 32 (1): 75–91. doi:10.1017/S0890060417000245.

https://doi.org/10.1007/s00165-012-0263-2
https://doi.org/10.1109/MECATRONICS.2014.7018580
https://doi.org/10.1016/j.is.2010.01.001
https://doi.org/10.1016/j.artint.2005.05.003
https://doi.org/10.1002/sys.20198
https://doi.org/10.5381/jot.2003.2.4.c3
https://doi.org/10.1109/MS.2003.1231148
https://doi.org/10.5381/jot.2004.3.10.c5
https://doi.org/10.1504/IJPD.2005.006672
https://doi.org/10.1002/sys.21276
https://doi.org/10.1002/sys.21380
https://doi.org/10.1007/s10270-004-0066-x
https://doi.org/10.6028/NIST.IR.7310
https://doi.org/10.5381/jot.2011.10.1.a3
https://doi.org/10.6028/NIST.IR.7643
https://doi.org/10.1016/j.aei.2010.06.011
https://doi.org/10.1109/ISAP.2005.1599296
https://doi.org/10.1017/S0890060417000245

JOURNAL OF ENGINEERING DESIGN 519

Chen, S., J. Yi, H. Jiang, and X. Zhu. 2016. “Ontology and CBR Based Automated Decision-Making
Method for the Disassembly of Mechanical Products.” Advanced Engineering Informatics 30 (3):
564–584. doi:10.1016/j.aei.2016.06.005.

Classen, A., Heymans, P., Schobbens, P., 2008. “What’s in a Feature: A Requirements Engineering
Perspective.” In Proceedings of the 11th International Conference on Fundamental Approaches to
Software Engineering (Mar–Apr), 16–30.

Cohn, A., and A. Varzi. 2003. “Mereotopological Connection.” Journal of Philosophical Logic 32 (4):
357–390. doi:10.1023/A:1024895012224.

Czarnecki, K., and U. Eisenecker. 2000. Generative Programming: Methods, Tools, and Applications.
Boston: Addison-Wesley.

Dermeval, D., J. Vilela, J. Castro, S. Isotani, P. Brito, and A. Silva. 2016. “Applications of Ontologies in
Requirements Engineering: A Systematic Reviewof the Literature.”Requirements Engineering 21 (4):
405–437. doi:10.1007/s00766-015-0222-6.

Dorf, R., and R. Bishop. 2017.Modern Control Systems. 13th ed. London: Pearson.
Dvorak, D., Amador, A., Starbird, T., 2008. “Comparison of Goal-Based Operations and Command

Sequencing,” In Proceedings of the SpaceOps Conference, AIAA-2008-3335 (May). doi:10.2514/6.
2008-3335.

Fiorentini, X., S. Rachuri, H. Suh, J. Lee, and R. Sriram. 2010. “An Analysis of Description
Logic Augmented with Domain Rules for the Development of Product Models.” Journal of
Computing and Information Science in Engineering 10 (2): 021008–021008-13. doi:10.1115/1.33
85794.

Flatscher, R. 2002. “Metamodeling in EIA/CDIF—Meta-metamodel and Metamodels.” Association
of Computing Machinery Transactions on Modeling and Computer Simulation 12 (4): 322–342.
doi:10.1145/643120.643124.

Fortineau, V., T. Paviot, and S. Lamouri. 2013. “Improving the Interoperability of Industrial Information
Systems with Description Logic-Based Models - The State of the art.” Computers in Industry 64 (4):
363–375. doi:10.1016/j.compind.2013.01.001.

Fowler, M. 2010. Domain-Specific Languages. Boston: Addison-Wesley.
Friedenthal, S., A. Moore, and R. Steiner. 2014. A Practical Guide to SysML. 3rd ed. Waltham: Morgan

Kaufman OMG Press.
Friedenthal, S., and C. Oster. 2017. Architecting Spacecraftwith SysML: AModel-based Systems Engineer-

ing Approach. Scotts Valley: CreateSpace.
Genesereth, M., and N. Nilsson. 1987. Logical Foundations of Artificial Intelligence. Palo Alto: Morgan

Kaufman.
Glinz, M., 2000. “Improving the Quality of Requirements with Scenarios.” In Proceedings of the Second

World Congress for Software Quality, 55–60.
Grenon, P., and B. Smith. 2004. “SNAP and SPAN: Towards Dynamic Spatial Ontology.” Spatial Cogni-

tion and Computation 4 (1): 69–103. doi:10.1207/s15427633scc0401_5.
Gruhier, E., F. Demoly, K. Kim, S. Abboudi, and S. Gomes. 2016. “A Theoretical Framework for Product

Relationships Description over Space and Time in IntegratedDesign.” Journal of EngineeringDesign
27 (4): 269–305. doi:10.1080/09544828.2016.1144049.

Gruninger, M., and C. Menzel. 2003. “The Process Specification Language (PSL): Theory and Applica-
tions.” Artificial IntelligenceMagazine 24: 3.

Guizzardi, G. Wagner, and H. Herre. 2004. ““On the Foundations of UML as an Ontology Rep-
resentation Language.” Lecture Notes in Computer Science 3257: 47–62. doi:10.1007/978-3-540-
30202-5_4.

Harbelot, B., Arenas, H., Cruz, C. 2013. “A SemanticModel toQuery Spatial-Temporal Data.” In Proceed-
ings of the 6th International Workshop on Information Fusion and Geographic Information Systems:
Environmental and Urban Challenges, 75–89. doi:10.1007/978-3-642-31833-7_5.

Harel, D. 1987. “Statecharts: A Visual Formalism for Complex Systems.” Science of Computer Program-
ming 8 (3): 231–274. doi:10.1016/0167-6423(87)90035-9.

Havelund, K., Kumar, R., Delp, C., Clement, B., 2016. “K: AWide Spectrum Language for Modeling, Pro-
gramming andAnalysis.” In Proceedingsof 4th InternationalConferenceonModel-DrivenEngineering
and Software Development (Feb), 111–122. doi:10.5220/0005741401110122.

https://doi.org/10.1016/j.aei.2016.06.005
https://doi.org/10.1023/A:1024895012224
https://doi.org/10.1007/s00766-015-0222-6
https://doi.org/10.2514/6.2008-3335
https://doi.org/10.1115/1.3385794
https://doi.org/10.1145/643120.643124
https://doi.org/10.1016/j.compind.2013.01.001
https://doi.org/10.1207/s15427633scc0401_5
https://doi.org/10.1080/09544828.2016.1144049
https://doi.org/10.1007/978-3-540-30202-5_4
https://doi.org/10.1007/978-3-642-31833-7_5
https://doi.org/10.1016/0167-6423(87)90035-9
https://doi.org/10.5220/0005741401110122

520 C. BOCK AND C. GALEY

Horrocks, I., O. Kutz, and U. Sattler. 2006. “The EvenMore Irresistible SROIQ.” In Proceedings of the 10th
International Conference on Principles of Knowledge Representation and Reasoning (Jun). American
Association for Artificial Intelligence, 57-67.

Ingham, M., R. Rasmussen, M. Bennett, and A. Moncada. 2005. ““Engineering Complex Embed-
ded Systems with State Analysis and the Mission Data System.” Journal of Aerospace Computing,
Information, and Communication 2 (12): 507–536. doi:10.2514/1.15265.

International Organization for Standardization. 2018. ISO/IEC/IEEE 29148, Systems and Software Engi-
neering — Life Cycle Processes — Requirements Engineering. https://www.iso.org/standard/72089.
html.

International Telecommunication Union. 2011.Message SequenceChart. ITU-T Z.120. https://www.itu.
int/rec/T-REC-Z.120-201102-I.

Jacobson, I., M. Christerson, P. Jonsson, and G. Övergaard. 2004.Object-Oriented Software Engineering:
A Use Case Driven Approach. Redwood City: Addison Wesley.

Jin, Z. 2018. Environment Modeling-Based Requirements Engineering for Software Intensive Systems.
Cambridge, MA: Morgan Kaufmann.

Jureta, I., J. Mylopoulos, and S. Faulkner. 2009. “A Core Ontology for Requirements.” Applied Ontology
4 (3): 169–244. doi:10.3233/AO-2009-0069.

Kang, K., Cohen, S., Hess, J, Novak, W., Peterson, A., 1990. Feature-Oriented Domain Analysis (FODA)
Feasibility Study. Software Engineering Institute Technical Report CMU/SEI-90-TR-21.

Krdzavac, N., and C. Bock. 2008. Reasoning in Manufacturing Part – Part Examples with OWL 2. U.S
National Institute of Standards and Technology Interagency Report 7535 (Oct). doi:10.6028/NIST.
IR.7535.

Lee, J., S. Fenves, C. Bock, R. Sudarsan, H. Suh, X. Fiorentini, and R. Sriram. 2012. “Product Modeling
Framework and Language for Behavior Evaluation.” IEEE Transactions on Robotics and Automation
9 (1): 110–123. doi:10.1109/TASE.2011.2165210.

Lee, K., Kang, K., Lee, J., 2002. “Concepts and Guidelines of Feature Modeling for Product Line Soft-
ware Engineering” In Proceedings of the 7th International Conference on Software Reuse: Methods,
Techniques, and Tools (Apr), 62–77.

Lin, J., M. Fox, and T. Bilgic. 1996. “A Requirement Ontology for Engineering Design.” Concurrent
Engineering 4 (3): 279–291. doi:10.1177/1063293X9600400307.

Marquardt, W., J. Morbach, A. Wiesner, and A. Yang. 2010. “OntoCAPE: A Re-usable Ontology for
Chemical Process Engineering.” Springer. doi:10.1007/978-3-642-04655-1.

Morse, A. 1995. “Control Using Logic-Based Switching.” In Trends in Control, edited by A. Isidori,
69–113. doi:10.1007/978-1-4471-3061-1_4.

Negri, P., Souza, V., Leal, A., Falbo, R., Guizzardi, G., 2017. “Towards an Ontology of Goal-Oriented
Requirements.” In Proceedings of 20th Conferencia Iberoamericana en Software Engineering (May),
165–178.

Nguyen, T., J. Grundy, and M. Almorsy. 2016. “Ontology-based Automated Support for Goal-
use Case Model Analysis.” Journal Software Quality 24 (3): 635–673. doi:10.1007/s11219-015-
9281-7.

Niles, I., and A. Pease. 2001. “Toward a Standard Upper Ontology.” In Proceedings of the 2nd Interna-
tional Conference on Formal Ontology in Information Systems (Oct), 2–9, Association of Computing
Machinery.

Object Management Group. 2010. Unified Modeling Language: Infrastructure. http://doc.omg.org/
formal/2010-05-03.

Object Management Group. 2014. Ontology Definition Metamodel, version 1.1. http://www.omg.org/
spec/ODM/1.1.

Object Management Group. 2015a. OMG Unified Modeling Language, version 2.5. http://www.omg.
org/spec/UML/2.5.

ObjectManagementGroup. 2015b.DiagramDefinition, version1.1. http://www.omg.org/spec/DD/1.1.
Object Management Group. 2017a. OMG Systems Modeling Language, Version 1.5. http://www.omg.

org/spec/SysML/1.5.
Object Management Group. 2017b. Semantics of a Foundational Subset for Executable UML Models.

https://www.omg.org/spec/FUML/1.3.

https://doi.org/10.2514/1.15265
https://www.iso.org/standard/72089.html
https://www.itu.int/rec/T-REC-Z.120-201102-I
https://doi.org/10.3233/AO-2009-0069
https://doi.org/10.6028/NIST.IR.7535
https://doi.org/10.1109/TASE.2011.2165210
https://doi.org/10.1177/1063293X9600400307
https://doi.org/10.1007/978-3-642-04655-1
https://doi.org/10.1007/978-1-4471-3061-1_4
https://doi.org/10.1007/s11219-015-9281-7
http://doc.omg.org/formal/2010-05-03
http://www.omg.org/spec/ODM/1.1
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/DD/1.1
http://www.omg.org/spec/SysML/1.5
https://www.omg.org/spec/FUML/1.3

JOURNAL OF ENGINEERING DESIGN 521

Object Management Group. 2017c. Systems Modeling Language v2, Request for Proposal. http://doc.
omg.org/ad/17-12-02.

Object Management Group. 2018. SysML Extension for Physical Interaction and Signal Flow Simulation.
https://www.omg.org/spec/SysPhS.

Odell, J. 1994. “Six Different Kinds of Composition.” Journal of Object-Oriented Programming 5: 8.
Panetto, H., M. Dassisti, and A. Tursi. 2012. “ONTO-PDM: Product-Driven ONTOlogy for Product Data

Management Interoperability within Manufacturing Process Environment.” Advanced Engineering
Informatics 26 (2): 334–348. doi:10.1016/j.aei.2011.12.002.

Partridge, C. 2005. Business Objects: Re-engineering for Re-use. London: The BORO Centre.
Paul, N., P. Bradley, and M. Breunig. 2015. “Integrating Space, Time, Version and Scale Using Alexan-

drovTopologies.” International Journalof3-D InformationModeling4 (4): 64–85. doi:10.4018/IJ3DIM.
2015100104.

Randell, D., Cui, Z, Cohn, A., 1992. “A Spatial Logic based on Regions and Connection” In Proceedings
of the 3rd International Conference on Knowledge Representation and Reasoning.

Sanya, I., and E. Shehab. 2014. “A Framework for Developing Engineering Design Ontologies
within the Aerospace Industry.” International Journal of Production Research 53 (8): 2383–2409.
doi:10.1080/00207543.2014.965352.

Schmitz, D., Nissen, H., Jarke, M., Rose, T., Drews, P., Hesseler, F., Reke, M, 2008. “Requirements Engi-
neering for Control Systems Development in Small and Medium-Sized Enterprises.” In Proceedings
of the 16th IEEE International Requirements Engineering Conference. doi:10.1109/RE.2008.27.

Schneidera, F., and B. Berenbach. 2013. “A Literature Survey on International Standards for Systems
Requirements Engineering.” Procedia Computer Science 16 (1): 796–805. doi:10.1016/j.procs.2013.
01.083.

Schobbens, P., P. Heymans, J. Trigaux, and Y. Bontemps. 2007. “Generic Semantics of Feature Dia-
grams.” Computer Networks 51 (2): 456–479. doi:10.1016/j.comnet.2006.08.008.

Scott, K., A. Uhl, D. Weise, and S. Mellor. 2004. MDA Distilled: Principles of Model-Driven Architecture.
Boston: Addison-Wesley.

Sima, W., and P. Brouseb. 2014. “Towards an Ontology-Based Persona-Driven Requirements and
Knowledge Engineering.” ProcediaComputer Science 36: 314–321. doi:10.1016/j.procs.2014.09.099.

Singh, A., B. Gurumoorthy, and L. Christie. 2017. “Empty Space Modelling for Detecting Spatial Con-
flicts across Multiple Design Domains.” In Proceedings of Product Lifecycle Management and the
Industry of the Future, 223–230. doi:10.1007/978-3-319-72905-3_20.

Sutcliffe, A., 2003. “Scenario-based Requirements Engineering.” In Proceedings of the 11th IEEE Interna-
tional Requirements Engineering Conference. doi:10.1109/ICRE.2003.1232776.

Terziyan, V., and O. Kaikova. 2016. “Ontology for Temporal Reasoning Based on Extended Allen’s
Interval Algebra.” International Journal of Metadata, Semantics and Ontologies 11 (2): 3–109.
doi:0.1504/IJMSO.2016.080348.

van Lamsweerde, A. 2009. Requirements Engineering: From System Goals to UML Models to Software
Specifications. Chichester: Wiley.

van Ruijven, L. 2015. “Ontology for Systems Engineering as a Base for MBSE.” International Council on
Systems Engineering International Symposium 25: 1. doi:10.1002/j.2334-5837.2015.00061.x.

Wagner, D., M. Bennett, R. Karban, N. Rouquette, S. Jenkins, and M. Ingham. 2012. “An
Ontology for State Analysis: Formalizing the Mapping to SysML.” IEEE Aerospace Conference.
doi:10.1109/AERO.2012.6187335.

Welty, C., and R. Fikes. 2006. “A Reusable Ontology for Fluents in OWL.” In Proceedings of the Fourth
International Conference on Formal Ontology in Information Systems, 226–236.

West, M. 2011. Developing High Quality DataModels. Burlington, MA: Morgan Kaufmann.
Winston, M., R. Chaffin, and D. Herrmann. 1987. “A Taxonomy of Part-Whole Relations.” Cognitive

Science 11: 417–444. doi:10.1207/s15516709cog1104_2.
WorldWideWeb Consortium. 2012.OWL2WebOntology Language, DocumentOverview. http://www.

w3.org/TR/owl2-overview.
Zave, P., and M. Jackson. 1997. “Four Dark Corners of Requirements Engineering.” Association

for Computing Machinery Transactions on Software Engineering and Methodology 6 (1): 1–30.
doi:10.1145/237432.237434.

http://doc.omg.org/ad/17-12-02
https://www.omg.org/spec/SysPhS
https://doi.org/10.1016/j.aei.2011.12.002
https://doi.org/10.4018/IJ3DIM.2015100104
https://doi.org/10.1080/00207543.2014.965352
https://doi.org/10.1109/RE.2008.27
https://doi.org/10.1016/j.procs.2013.01.083
https://doi.org/10.1016/j.comnet.2006.08.008
https://doi.org/10.1016/j.procs.2014.09.099
https://doi.org/10.1007/978-3-319-72905-3_20
https://doi.org/10.1109/ICRE.2003.1232776
https://doi.org/0.1504/IJMSO.2016.080348
https://doi.org/10.1002/j.2334-5837.2015.00061.x
https://doi.org/10.1109/AERO.2012.6187335
https://doi.org/10.1207/s15516709cog1104_2
http://www.w3.org/TR/owl2-overview
https://doi.org/10.1145/237432.237434

522 C. BOCK AND C. GALEY

Zeng, Y. 2015. “Environment-Based Design (EBD): a Methodology for Transdisciplinary Design.”
Journal of Integrated Design and Process Science 19 (1): 5–24. doi:10.3233/jid-2015-0004.

Zhang, Z., Z. Liu, Y. Chen, and Y. Xie. 2012. “Knowledge Flow in Engineering Design: An Ontological
Framework.” Journal of Mechanical Engineering Science 227 (4): 760–770. doi:10.1177/0954406212
454967.

https://doi.org/10.3233/jid-2015-0004
https://doi.org/10.1177/0954406212454967

	Integrating four-dimensional ontology and systems requirements modelling
	1. Introduction
	2. Related work
	3. Integrating ontology and engineering languages
	3.1. Logical modelling
	3.2. Engineering-specific modelling

	4. Logical modelling in space–time
	4.1. Space, time, and space–time
	4.2. Composition in space–time

	5. Requirements modelling in space and time
	5.1. Objects and behaviours
	5.2. States
	5.3. Requirements, designs, and tests

	6. Summary and future work
	Notes
	Acknowledgements
	Disclosure statement
	References

